Electronic Supplementary information for

Divalent Cation Effects in the Glass Transition of Poly (diallyl dimethylammonium)-Poly (styrene sulfonate) Complexes

Tamunoemi Braide,¹ Suvesh Manoj Lalwani,¹ Chikaodinaka I. Eneh,¹ Jodie L. Lutkenhaus^{1,2}

- 1. Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- 2. Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, USA

Figure S1. Types of interactions occurring within the PDADMA-PSS complex in the presence of NaCl, CaCl₂, and MgCl₂. In our system containing PDADMA and PSS in the presence of NaCl, CaCl₂, and MgCl₂, two distinct ion interactions are possible: extrinsic and intrinsic. Under these broad types, **Figure S1** shows the four types of ion-ion interactions that can occur.

Figure S2. Schematic of monovalent and divalent counterion interaction with PSS chains, illustrating the formation of crosslinks in a complex when divalent cations (Ca^{2+} or Mg^2) are introduced to PDADMA/PSS polyelectrolyte assemblies. This results in a molecule with a denser structure, reduced water permeability, and increased salt retention and stability. ¹

Figure S3. Glass transition temperatures of PDADMA-PSS PECs prepared from NaCl, CaCl₂, or MgCl₂ solutions. The isolated PECs were rehydrated with a solution matching that of its assembly and examined using MDSC. 0.10 M NaCl reproduced with permissions from [²] "Molecular Origin of the Glass Transition in Polyelectrolyte Assemblies." By Zhang, Y.; Batys, P.; O'Neal, J. T.; Li, F.; Sammalkorpi, M.; Lutkenhaus, J. L. 2018. *ACS Central Science*, *4* (5), 638-644. Copyright (2018) American Chemical Society.

Figure S4. $ln \left(\frac{n_{H_2O}}{n_{intrinsic ion pair}} \right)$ vs $\frac{1000}{T_g}$ for PDADMA-PSS PEC systems made from 0.10 M MgCl₂, 0.10 M CaCl₂, and 0.10 M NaCl solutions. The data for PDADMA-PSS PECs at 0.10 M NaCl were reproduced with permission from [²] "Molecular Origin of the Glass Transition in Polyelectrolyte Assemblies." By Zhang, Y.; Batys, P.; O'Neal, J. T.; Li, F.; Sammalkorpi, M.; Lutkenhaus, J. L. 2018. ACS Central Science, 4 (5), 638-644. Copyright (2018) American Chemical Society. The lines are linear first of the data to Equation 1. Each data point represents a single experiments.

	Na (wt%)	S (wt%)	Cl (wt%)	Ca (wt%)	N (wt%)
0.03 M	1.83E-02 ± 5.00E-04	9.05E+00 ±	1.12E+01 ±	3.96E-02 ±	1.67E+01 ±
		6.0E-02	7.00E-02	5.00E-04	7.62E-02
0.10 M	2.41E-02 ± 6.77E-03	1.02E+01 ±	2.14E+00 ±	2.07E-01 ± 5.13E-02	1.04E+01 ±
			4.59E-02		2.00E+00
		2.28E+00			
0.15 M	3.76E-02 ± 1.10E-02	9.91E+00 ±	2.30E+00 ±	1.53E+00 ± 2.15E-01	9.36E+00 ±
		2.74E+00	5.58E-02		2.40E+00
0.20 M	3.23E-02 ±	7.98E+00 ±	2.91E+00 ±	1.60E+00 ± 2.70E-01	8.11E+00 ±
	1.30E-02	3.26E+00	7.67E-02		2.86E+00

Table S1. Summar	y of com	positional ar	alysis from	NAA for	CaCl ₂ -PECs
------------------	----------	---------------	-------------	---------	-------------------------

	Na (wt%)	S (wt%)	Cl (wt%)	Mg (wt%)	N (wt%)
0.03 M	1.94E-02 ± 6.00E-04	9.46E+00 ± 6.00E-02	1.04E+01 ± 9.00E-02	3.52E-02 ± 5.00E-04	1.64E+01 ± 8.84E-02
0.10 M	2.22E-02 ± 7.60E-04	8.73E+00 ± 6.98E-02	1.38E+01 ± 6.00E-01	2.30E-01 ± 2.74E-03	1.82E+01 ± 4.78E-01
0.15 M	3.05E-02 ± 9.40E-04	8.37E+00 ± 6.70E-02	1.75E+01 ± 8.00E-01	3.93E-01 ± 4.66E-03	2.07E+01 ± 6.35E-01
0.20 M	2.92E-02 ± 9.73E-03	8.23E+00 ± 2.71E+00	2.54E+00 ± 6.92E-02	7.98E-01 ± 9.92E-02	8.25E+00 ± 2.37E+00

Table S2. Summary of compositional analysis from NAA for MgCl₂-PECs

	Ratio of PSS:PDADMA in complex	PSS mol%
0.30 M NaCl - PEC	0.85 ± 0.03	46 ± 1
0.10 M NaCl – PEC (from ref. ²)	0.84± 0.09	46 ± 3
0.03 M CaCl ₂ - PEC	0.88 ± 0.03	47 ± 1
0.10 M CaCl ₂ - PEC	0.88 ± 0.04	48 ± 1
0.15 M CaCl ₂ - PEC	0.88 ± 0.04	47 ± 1
0.20 M CaCl ₂ - PEC	0.93 ± 0.02	48 ± 0.5
0.03 M MgCl ₂ - PEC	0.92 ± 0.02	48 ± 1
0.10 M MgCl ₂ - PEC	0.87 ± 0.04	48 ± 0.1
0.15 M MgCl ₂ - PEC	0.86 ± 0.03	46 ± 1
0.20 M MgCl ₂ - PEC	0.91 ± 0.01	48 ± 0.2

 Table S3. NMR integration comparing monovalent and divalent salt in PDADMA-PSS PECs

	Na⁺	Ca ²⁺	Mg ²⁺
Jones Dole B Coefficient ³	0.085	0.298	0.385
Hydrated radius (pm) ⁴	358	412	428
Bare ion radius (pm) ³	102	100	72
Hydration number ³	3.5	7.2	10

Table S4. Ion properties of sodium, calcium, and magnesium ion

Table S5. Doping levels, composition, and the enthalpy associated with PECs prepared from different salts and concentrations.^a

Salt-concentration	Y ⁺	у -	PSS: PDADMA ratio	Enthalpy (kJ/mol)
CaCl ₂ -0.03 M	0.500 ± 0.004	0.0020 ± 0.0001	0.88 ± 0.03	9.6 ± 0.7
CaCl ₂ -0.10 M	0.20 ± 0.03	0.008 ± 0.003	0.88 ± 0.04	9.5 ± 2.0
CaCl ₂ -0.15 M	0.20 ± 0.05	0.060 ± 0.020	0.88 ± 0.04	11.7 ± 2.2
CaCl ₂ -0.20 M	0.3 ± 0.1	0.080 ± 0.040	0.93 ± 0.02	9.6 ± 1.5
MgCl ₂ -0.03 M	0.500 ± 0.005	0.0020 ± 0.0001	0.92 ± 0.02	9.4 ± 1.3
MgCl ₂ -0.10 M	0.60 ± 0.03	0.0200 ± 0.0003	0.87 ± 0.04	14.9 ± 2.8
MgCl ₂ -0.15 M	0.70 ± 0.04	0.0300 ± 0.0005	0.86 ± 0.03	10.3 ± 2.1
MgCl ₂ -0.20 M	0.20 ± 0.07	0.060 ± 0.020	0.91 ± 0.01	12.5 ± 2.0

^aThe error in y^+ and y^- represents the standard deviation of a minimum of three experiments. The error in the enthalpy represents the 95% confidence interval from linear fits (see **Figure 6**).

References

(1) Reurink, D. M.; Willott, J. D.; Roesink, H. D. W.; de Vos, W. M. Role of Polycation and Cross-Linking in Polyelectrolyte Multilayer Membranes. *ACS Applied Polymer Materials* **2020**, *2* (11), 5278-5289. DOI: 10.1021/acsapm.0c00992.

(2) Zhang, Y.; Batys, P.; O'Neal, J. T.; Li, F.; Sammalkorpi, M.; Lutkenhaus, J. L. Molecular Origin of the Glass Transition in Polyelectrolyte Assemblies. *ACS Central Science* **2018**, *4* (5), 638-644. DOI: 10.1021/acscentsci.8b00137.

(3) Marcus, Y. Ion Properties; CRC Press, 1997.

(4) Volkov, A. G.; Paula, S.; Deamer, D. W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. *Bioelectrochemistry and Bioenergetics* **1997**, *42* (2), 153-160. DOI: <u>https://doi.org/10.1016/S0302-4598(96)05097-0</u>.