Supporting Information

Tough supramolecular hydrogels of poly(*N*,*N*-dimethylacrylamide)-grafted poly(methacrylic acid) with cooperative hydrogen bonds as physical crosslinks

Cuihong Ma^{a,†}, Cong Du^{b,†,*}, Qing Bo Tong^a, Xin Ning Zhang^a, Miao Du^a, Qiang Zheng^a, Zi Liang Wu^{a,*}

^aMinistry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China;

^bState Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China

[†]They contributed equally to this work.

*Corresponding authors. E-mail: cong.du@qdu.edu.cn, wuziliang@zju.edu.cn

Scheme S1 Synthesis of PDMAA oligomers and PDMAA macromonomers.

Fig. S1 Molecular weight distributions of PDMAA oligomers measured by size exclusion chromatography.

Fig. S2 ¹H-NMR spectrum of PDMAA oligomer by using D_2O (4.70 ppm) as the deuterated reagent.

Fig. S3 ¹H-NMR spectrum of PDMAA macromonomer by using D_2O (4.70 ppm) as the deuterated reagent.

Fig. S4 The dissolution of GP-0.4 hydrogel in 1 M NaOH solution (pH = 14) at room temperature in 1 h.

Fig. S5 (a) Toughness of the equilibrated GP hydrogels with different f. (b,c) Toughness of the GP-0.4 (b) and CP-0.4 (c) hydrogels equilibrated in aqueous conditions with different pH values at room temperature.

Fig. S6 Tensile stress-strain curves (a) and corresponding mechanical parameters (b) of the CP-0.4 hydrogels equilibrated in aqueous conditions with different pH values at room temperature. The swelling ratio in length, *S*, respected to the length of the gel at pH = 7 is also shown in (b).

Fig. S7 (a) DMA spectra of the CP-0.4 gel with a heating rate of 1 °C/min. DMA measurement is performed in a single cantilever beam mode at a frequency of 1 Hz. (b) Temperature sweep of the GP-0.4 gel from 5 to 100 °C at a frequency of 5 Hz and strain amplitude of 0.2%. Heating rate: 5 °C/min. (c) Dynamic moduli and loss factor spectra of the GP-0.4 gel following TTS with the reference temperature of 20 °C. (d) Arrhenius plot of the horizontal shift factor $\alpha_{\rm T}$. The apparent activation energy $E_{\rm a}$ is calculated from the slop of the curve.

Hydrogel	PDMAA-macromonomer [g]	MAAc [g]	ABVN [mg]	Solvent [g]
GP-0.1	0.6	5.4	85.38	13.91
GP-0.2	1.2	4.8	84.24	13.91
GP-0.3	1.8	4.2	83.10	13.92
GP-0.4	2.4	3.6	81.96	13.92
GP-0.5	3.0	3.0	80.84	13.92
GP-0.6	3.6	2.4	79.70	13.92
GP-0.7	4.2	1.8	78.56	13.92

Table S1 The recipes of precursor solutions for GP hydrogels with different f.

Table S2 The recipes of the precursor solution for CP-0.4 hydrogels.

Hydrogel	DMAA	MAAc	APS	H ₂ O
	[g]	[g]	[mg]	[g]
CP-0.4	2.4	3.6	75.31	13.92

Hydrogel	N (wt%)	C (wt%)	H (wt%)
	$1.24{\pm}0.08$	55.77±0.22	7.50±0.01
GP-0.1	1.41	56.29	7.19
CP 0 2	2.31 ± 0.04	56.32±0.37	7.51±0.09
GP-0.2	2.83	56.77	7.40
	$3.99{\pm}0.08$	56.92±0.35	7.71±0.04
GP-0.5	4.24	57.25	7.61
$C \mathbf{P} 0 4$	$5.35 {\pm} 0.07$	57.68±0.41	8.00±0.03
GP-0.4	5.66	57.73	7.82
	$6.66 {\pm} 0.07$	$58.54{\pm}0.50$	8.10±0.19
GP-0.5	7.07	58.21	8.03
	7.96 ± 0.05	$58.07 {\pm} 0.01$	8.16±0.25
Gr-0.0	8.48	58.69	8.25
	$9.03{\pm}0.09$	59.86±0.10	8.07±0.35
Gr-0.7	9.90	59.17	8.46
	5.91±0.09	57.61±0.02	7.99 ± 0.08
Cr-0.4	5.66	57.73	7.82

Table S3 Elemental analysis results of the equilibrated GP and CP hydrogels. The top and bottom rows for each sample are the experimental value and theoretical value, respectively.