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Theoretical background

Many theoretical works have been devoted to the expression of the propagation velocity of elastic 

waves in a stretched non-linear elastic soft solid by revisiting the seminal work of Landau and 

Lifshitz (Landau and Lifshitz, 1959). Here, we summarize the general equations.

Mechanics of a continuous medium

A disturbance in a medium is represented by a particle displacement with time dependent position 

u(x,t). The general equation of motion is given by:

𝜌
∂²𝑢𝑖

∂𝑡²
=

∂𝜎𝑖𝑗

∂𝑥𝑗
(S1)

with ρ, σ and  designate the density, the second Piola-Kirchhoff stress tensor and the particle 
∂²𝑢𝑖

∂𝑡²

acceleration, respectively.

The Piola-Kirchhoff stress tensor is given by:
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𝜎𝑖𝑗 =
∂𝑊

∂(∂𝑢𝑖

∂𝑥𝑗) (S2)

with W, the strain energy density. In a general elastic medium, the strain energy density developed 

to the third order is:

𝑊 = µ𝑒2𝑖𝑘 +
𝜆
2

𝑒2 +
1
3

𝐴𝑒𝑖𝑘𝑒𝑖𝑙𝑒𝑘𝑙 + 𝐵𝑒2𝑖𝑘𝑒 +
1
3

𝐶𝑒3 (S3)

where e is the Lagrangian finite-strain tensor:

𝑒𝑖𝑘 =
1
2(∂𝑢𝑖

∂𝑥𝑘
+

∂𝑢𝑘

∂𝑥𝑖
+

∂𝑢𝑙

∂𝑥𝑖

∂𝑢𝑙

∂𝑥𝑘) (S4)

Also defined as the Lagrangian finite strain or Green-Lagrange strain tensor:

𝑒 =
1
2(𝐹

𝑇𝐹 ‒ 𝐼) (S5)

with , being the right Cauchy-Green deformation tensor, which is commonly used in 𝐶 = 𝐹𝑇𝐹

materials science. So, e is a measure of how much C differs from identity I. In purely homogeneous 

deformations, the deformation gradient F has a diagonal representation: F = diag[F11, F22, F33] = 

diag[λ1, λ2, λ3].

Non-linear acoustoelasticity (AE): elastography of soft solids under stress 

In contrast to a linear analysis, where we may apply a linear strain measure (engineering strain) for 

infinitesimal deformation, a finite strain measure is used to represent local deformations in a large 

deformation nonlinear analysis. In this particular case, we use the full equation of the strain energy, 

eq. S3, and the tensors are no longer symmetrical.

Landau and Lifshitz have established the general expression for the elastic energy density of an 

isotropic body in the third-order approximation introducing the third-order coefficients (A, B, C) 

(Landau and Lifshitz, 1959).

From the components of a symmetrical tensor of rank two, we can form two quadratic scalar (  𝜀2𝑖𝑘

and ) and three cubic scalar ( , . Hence, the most general scalar containing terms 𝜀2 𝜀3,𝜀𝜀2𝑖𝑘 𝜀𝑖𝑘𝜀𝑖𝑙𝜀𝑘𝑙

quadratic and cubic in , with scalar coefficient (since the body is isotropic), is:𝜀𝑖𝑘
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Catheline et al. (Catheline, Gennisson, et Fink 2003) have expressed the elastic strain energy 

density as function of the invariants and develop to the fourth-order with the fourth-order 

coefficients (E, F, G, H):

𝑊 = µ𝐼2 +
𝜆
2

𝐼21 +
1
3

𝐴𝐼3 + 𝐵𝐼1𝐼2 +
1
3

𝐶𝐼31 + 𝐸𝐼1𝐼3 + 𝐹𝐼21𝐼2 + 𝐺𝐼22 + 𝐻𝐼41 (S6)

with the invariants of the Lagrangian (Green-Lagrange) strain tensor defined as follow:

             𝐼1 = 𝑡𝑟(𝑒) 𝐼2 = 𝑡𝑟(𝑒2) 𝐼3 = 𝑡𝑟(𝑒3) (S7)

The Lamé and the Landau coefficients as a function of the elastic moduli in the Voigt’s notations 

are:

- λ = 𝑐12

- µ = 𝑐66

- A = 4𝑐456

- B = 𝑐144

- C =  etc.𝑐123 2

From the articleS99 of (Catheline et al. 2003). and  designate the component of the second-𝑐𝑖𝑗 𝑐𝑖𝑗𝑘

order elastic tensor and the third-order elastic tensor, respectively.

It is possible to simplify equation S6, using the logarithmic strain tensor ē defined as:

ē =
1
2

𝑙𝑛(𝛿 + 2𝑒) (S8)

with the invariants:

          𝑖1 = 𝑡𝑟(ē) 𝑖2 = 𝑡𝑟(ē2) 𝑖3 = 𝑡𝑟(ē3) (S9)

For incompressible material, det(F) = 1. 

We can then define the determinant of the finite strain tensor as: det(e) =  = 0. Now, 
1
2[𝑑𝑒𝑡(𝐹𝑇𝐹) ‒ 1]

using the well-known identity log(det(A)) = tr(log(A)), the incompressibility condition can be 

easily exffpressed in terms of :𝑖1

 = tr( tr(  ln(det(𝑖1
ē =

1
2 𝑙𝑛⁡(𝛿 + 2𝑒) =

1
2

𝛿 + 2𝑒 =
1
2

𝑙𝑛(1 + 2𝑑𝑒𝑡(𝑒)) =
1
2

𝑙𝑛(1) = 0.
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For the sake of simplicity, the following calculations will be shown to the third order terms of the 

strain energy function.

The Lagrangian strain tensor as a function of the logarithmic strain tensor can be expressed using 

the Taylor series of the exponential function:

𝑒 = ē + ē2 +
2
3

ē3 (S10)

and its invariants can be expressed as:

                  
𝐼1 = 𝑖1 + 𝑖2 +

2
3

𝑖3 𝐼2 = 𝑖2 + 2𝑖3 𝐼3 = 𝑖3
(S11)

It follows that the third-order expansion of W in terms of the invariants of the logarithmic strain  ē

reads:

𝑊 = µ𝑖2 +
𝜆
2

𝑖21 + (𝐴3 + 2µ)𝑖3 + (𝐵 + 𝜆)𝑖1𝑖2 +
1
3

𝐶𝑖31 (S12)

which, if we take into account that  = 0, equals to:𝑖1

𝑊 = µ𝑖2 + (𝐴3 + 2µ)𝑖3

or  
𝑊 = µ(𝑖2 + 2𝑖3) + (𝐴3)𝑖3
𝑊 = µ𝐼2 +

𝐴
3

𝐼3

If we extend this analysis to include fourth-order terms in the strain energy functions, it leads us to 

the famous expression of Hamilton and Zabolotskaya (Hamilton et al. 2004; Zabolotskaya et al. 

2004):

𝑊 = µ𝐼2 +
1
3

𝐴𝐼3 + 𝐷𝐼22 (S13)

with , from equation S6.
𝐷 = 𝐺 + 𝐵 +

𝜆
2
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According to Hamilton et al. (Hamilton, Ilinskii, et Zabolotskaya 2004), the A constant determines 

the nonlinear shear stress (/or behavior) while D is required to describe nonlinear distortion of shear 

waves in finite amplitudes. 

Finally, Gennisson and colleagues (Gennisson et al. 2007) developed eq. S13 to retrieve the shear 

wave speed when the material is subjected to a stress. We expanded these equations to the 4th order:

𝜌𝑣 2
21 = µ0 ‒ 𝜎22( 𝐴

12µ0)+ 𝜎 2
22(2µ0 + 𝐴 + 3𝐷) 1

9µ0
2 (S14)

𝜌𝑣 2
13 = µ0 + 𝜎22(1 + 𝐴

6µ0)+ 𝜎 2
22(5µ0 + 74𝐴 + 3𝐷) 1

9µ0
2

(S15)

𝜌𝑣 2
12 = µ0 ‒ 𝜎22(1 + 𝐴

12µ0)+ 𝜎 2
22(5µ0 + 74𝐴 + 3𝐷) 1

9µ0
2

(S16)

𝜌𝑣 2
12 = µ0 + 𝜎22(1 + 𝐴

12µ0)+ 𝜎 2
22(5µ0 + 74𝐴 + 3𝐷) 1

9µ0
2

(S17)

The first index corresponds to the direction of the shear displacement induced by radiation force 

(direction of polarization of the shear wave) while the second index corresponds to the axis of 

propagation of the shear wave (see Fig. 2). One can notice when σ = 0, at rest, we retrieve the direct 

dependence of µ on the shear wave velocity.

Figure T1. The three possible configurations to generate shear wave in the material. Acoustic 
radiation pressure is used to create the shear wave and ultrafast imaging to detect the 

propagation of polarized shear waves in the phantom under uniaxial stress
22. The three resulting shear waves are designated as a) 21 or23, b) 13 or 31, c) 12 or 32.𝜎
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Note that if we consider a tensile test with a stress applied in the direction 2, ,with faces in axis 𝜎22

1 and 3 free to deform, we can write the right Cauchy-Green deformation tensor, according to the 

incompressibility assumption:

𝐶 = (𝜆21 0 0
0 𝜆22 0
0 0 𝜆23

)= (1𝜆 0 0

0 𝜆2 0

0 0
1
𝜆
) (S18)

with , with , the initial length and L, the length at stretch state.
𝜆 =

𝐿
𝐿0 𝐿0

It comes that the Green-Lagrange strain tensor invariants in tension can be written as:

𝐼1 = 𝑡𝑟(𝑒)=
1
2(𝜆2 + 2𝜆 ‒ 3)

𝐼2 = 𝑡𝑟(𝑒2)= 14[(𝜆2 ‒ 1)2 + 2(1𝜆 ‒ 1)2]
𝐼3 = 𝑡𝑟(𝑒3)= 18[(𝜆2 ‒ 1)3 + 2(1𝜆 ‒ 1)3]

(S19)

From eq. S6, it comes that the strain energy density function can be written in tension as:

𝑊 = µ
1
4[(𝜆2 ‒ 1)2 + 2(1𝜆 ‒ 1)2]+ 𝐴

24[(𝜆2 ‒ 1)3 + 2(1𝜆 ‒ 1)3]+ 𝐷
16[(𝜆2 ‒ 1)2 + 2(1𝜆 ‒ 1)2]2 (S20)

From the strain energy density function and using eq. S2 ( ∂W/∂λ), we can express the stress 𝜎22 =

as a function of :𝜆

𝜎22

= 𝜇[𝜆(𝜆2 ‒ 1) ‒
1

𝜆2(
1
𝜆

‒ 1)]+ 𝐴
4[𝜆(𝜆2 ‒ 1)2 ‒

1

𝜆2(
1
𝜆

‒ 1)2]+ 𝐷
2[(𝜆2 ‒ 1)2 + 2(1𝜆 ‒ 1)2][𝜆(𝜆2 ‒ 1) ‒

1

𝜆2(
1
𝜆

‒ 1)](S21)

    

For the most elastic incompressible material we have (swollen elastic gel at equilibrium), the stress 

calculated from the invariants matches well with the experimental true stress given by Instron. 
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Figure T2. Experimental stress and stress calculate from the strain energy density function as a 

function of λ = 1.3. The model fits well for λ = 1.3.
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Supplementary Figures

Supplementary Figure S1. Importance of agar addition in elastic gel. Left: Elastic gel without agar. Right: 
Elastic gel with 1 wt.% of agar. Agar increases echogenicity, the signal is better, homogeneous. Color bar 
represents the Young’s modulus (kPa). Bottom: Tensile test until 30% strain. Agar does not change the 

mechanics.   
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Supplementary Figure S2. Meshing of the SENT specimens indicating the crack tip, the ligament, and the 
node sets where boundary conditions and symmetry were applied. The ligament in blue solid line was 

blocked in the x-direction due to symmetry.

Supplementary Figure S3. Compression tests with different strain applied on the cubic gel. The shear 
wave velocity depends on the stress applied.
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Supplementary Figure S4. Polar plot showing five different probe position during a compression test at a 
fixed 20% strain. Nonlinear effects are significant since the value of ρv² is multiplied by 3 between 0 and 

90°. Shear wave velocity depends on the probe orientation when the gel is under stress.

Supplementary Table S1. Landau coefficients , A and D from compression and tensile tests for elastic µ0
(0.5 vol.% SiO2) gel.

(kPa) at rest
µ0

Propagation index 12 
A / D

Propagation index 21 
A / D

Propagation index 13 
A / D

Mean 
value

Compression 4.2  0.1± -21.4 / 4.7 -16.4 / 2.2 -19.0 / 5.5 -18.9 / 4.1

Tension 4.0  0.2± -18.9 / 7.3 - - -18.9 / 7.3
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Supplementary Figure S5. Tensile test until fracture for elastic (0.5 vol.% SiO2) (left)/viscoelastic (10 
vol.% SiO2) (right) gel. AE theory has been used to retrieve the macroscopical stress obtained from the 
mechanical tensile tool. It appears that the third order is no more valid when a stress of σ ≈ 20 kPa is 

reached.

Supplementary Figure S6. Viscoelastic gel (with NP). Top: No stress is applied; the gel is cut to reproduce 
an open notch, i.e. V-shape. The map is homogeneous anywhere in the gel. 

Bottom left: Singularity at t = 0. Bottom right: Singularity at t = 45 min. The stress amplification 
disappears proving that a physical phenomenon happens, i.e. network rearrangement at NP surface. 

Color bar is a scale for the Young’s Modulus.
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Supplementary Figure S7. Delimitation of the area of interest. The singularity appears at the crack tip 
but not around the crack tip, at the crack tip lips. Color bar is a scale for the Young’s Modulus. a) Gel with 
10 vol.% SiO2. b) Gel with 15 vol.% SiO2. Sometimes, for unknown reasons, it appears that there is a lack 

of signal inside the gel.

Supplementary Figure S8. 3D representation of the crack tip of a hybrid gel (left) et elastic gel (right). For 
the elastic gel, the stress is constant in time, there is no stress reorganization. In hybrid gel, stress is 

dissipated inside the gel, the singularity is erased, and fracture is avoided.
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Supplementary Figure S9. Relative macroscopic (line) and local (triangle) stress variation during 
a relaxation and creep test in a 10 vol.% silica NPs.

 


