Supporting Information

Confined Bicontinuous Microemulsions: Nanoscale Dynamics of the Surfactant Film

Margarethe Dahl,^{*a*} Olaf Holderer, ^{*b*} René Haverkamp, ^{*c*} Ingo Hoffmann, ^{*d*} Kathleen Wood, ^{*e*} Jessica Hübner, ^{*a*} Thomas Hellweg, ^{*c*} and Stefan Wellert ^{*a*}

Fig. S 1 SANS signal of the air-filled hydrophobic CPG and the bicontinuous microemulsion in bulk (ME). The red crosses represent the investigated *q*-range by NSE.

Table S 1 Fit Parameters of the intermediate scattering function of the microemulsion in bulk

q (1/Å)	$\Gamma_c ~(\times 10^3/\text{ns})$	Γ_z (1/ns)	Α
0.032	$1.38 {\pm} 0.07$	$0.04{\pm}0.01$	$0.17{\pm}0.02$
0.041	$1.78 {\pm} 0.07$	$0.04{\pm}0.01$	$0.21 {\pm} 0.02$
0.050	$2.29{\pm}0.12$	$0.04{\pm}0.01$	$0.29 {\pm} 0.02$
0.060	$4.62 {\pm} 0.20$	$0.08{\pm}0.01$	$0.26 {\pm} 0.02$
0.071	$5.84{\pm}0.31$	$0.09{\pm}0.01$	$0.36 {\pm} 0.03$
0.081	$8.38 {\pm} 0.47$	$0.12{\pm}0.01$	$0.39 {\pm} 0.03$
0.095	$15.57 {\pm} 0.54$	$0.17{\pm}0.01$	$0.47 {\pm} 0.02$
0.109	$20.63{\pm}1.18$	$0.21{\pm}0.01$	$0.54{\pm}0.03$
0.122	$32.38{\pm}3.85$	$0.27{\pm}0.05$	$0.50{\pm}0.07$

^a Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany. E-mail: a.dahl@tu-berlin.de

^b Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany.

^c Department of Chemistry, Physical and Biophysical Chemistry Group, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany.

^d Institut Laue-Langevin, 71 avenue des Martyrs, F-38042 Grenoble, France.

^e Australian Nuclear and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234, Australia

Fig. S 2 SANS signal of the CPG imbibed with the microemulsion, left hydrophilic CPG and right hydrophobic CPG.

Fig. S 3 Decay rate Γ_{DLS} in dependence of q^2 , the slope (solid line) determines the diffusion coefficient. Inset: The intensity-autocorrelation function at a scattering angle of 90 °. Uncertainties are within the symbols.

Fig. S 4 Normalized intermediate scattering functions of the confined microemulsion in the hydrophilic CPG100-OH (a), CPG-50-OH (b) and CPG17-OH (c) for several q values and the fit to the Eq. 9.

Fig. S 5 Normalized intermediate scattering function of the confined microemulsion in the hydrophilic CPG100-OH (a), CPG50-OH (b) and CPG17-OH.

Fig. S 6 Normalized intermediate scattering functions of the confined microemulsion in the hydrophobic CPG100-CH₃ (a), CPG50-CH₃ (b) and CPG17-CH₃ (c) for several q values. Bottom: normalized residuals of the fit.

Table S 2 Fit Parameters of the intermediate scattering function of the microemulsion inside the hydrophilic CPG17-OH

_				
Ģ	q (1/Å)	Α	Γ_c (1/ns) ^a	Γ_z (1/ns)
(0.032	$0.04{\pm}0.01$	$2.1e-24{\pm}0.001$	$0.074{\pm}0.036$
(0.041	$0.05 {\pm} 0.02$	$2.8e-60\pm0.001$	$0.048 {\pm} 0.027$
(0.050	$0.07 {\pm} 0.02$	$4.4e-20{\pm}0.001$	$0.036 {\pm} 0.015$
(0.060	$0.08{\pm}0.05$	$4.4e-22{\pm}0.001$	$0.028 {\pm} 0.160$
(0.071	$0.07 {\pm} 0.02$	$1.4e-21{\pm}0.001$	$0.053{\pm}0.018$
(0.081	$0.09 {\pm} 0.04$	8.9e-24±0.001	$0.053 {\pm} 0.035$
(0.095	$0.10{\pm}0.18$	$1.2e-15\pm0.002$	$0.040 {\pm} 0.058$
(0.109	$0.13{\pm}0.59$	4.5e-18±0.004	$0.031{\pm}0.101$
(0.122	$0.13{\pm}0.57$	$3.8e-19{\pm}0.006$	$0.044{\pm}0.177$

^{*a*} approx. 0, the contribution of Γ_c to the intermediate scattering function is negligible.

Table S 3 Fit Parameters of the intermediate scattering function of the microemulsion inside the hydrophobic CPG17-CH₃

q (1/Å)	Α	Γ_c (1/ns) ^a	Γ_z (1/ns)
0.032	$0.02{\pm}0.01$	$1.9e-04{\pm}0.001$	$0.144{\pm}0.124$
0.041	$0.03{\pm}0.01$	$2.0e-04{\pm}0.001$	$0.109{\pm}0.058$
0.050	$0.05{\pm}0.02$	$2.5e-04{\pm}0.001$	$0.061{\pm}0.037$
0.060	$0.08{\pm}0.02$	$1.1e-04{\pm}0.001$	$0.051{\pm}0.016$
0.071	$0.07{\pm}0.02$	$1.6e-04{\pm}0.001$	$0.056{\pm}0.015$
0.081	$0.09 {\pm} 0.03$	$1.7e-04{\pm}0.001$	$0.063 {\pm} 0.027$
0.095	$0.09 {\pm} 0.04$	$2.6e-20{\pm}0.002$	$0.091{\pm}0.041$
0.109	$0.08{\pm}0.01$	7.2e-04±0.004	$0.220{\pm}0.051$
0.122	$0.15{\pm}0.07$	$6.3e-10{\pm}0.006$	$0.079 {\pm} 0.043$

^{*a*} approx. 0, the contribution of Γ_c o the intermediate scattering function is negligible.

Table S 4 Fit Parameters of the intermediate scattering function of the microemulsion inside the hydrophilic CPG50-OH

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$0.041 \qquad 0.09 {\pm} 0.01 \qquad 0.0004 {\pm} 0.0001 \qquad 0.021 {\pm} 0.006$
$0.050 \qquad 0.13 {\pm} 0.03 \qquad 0.0004 {\pm} 0.0002 \qquad 0.039 {\pm} 0.010$
$0.060 \qquad 0.14{\pm}0.02 \qquad 0.0007{\pm}0.0002 \qquad 0.062{\pm}0.009$
$0.071 \qquad 0.20 {\pm} 0.01 \qquad 0.0007 {\pm} 0.0001 \qquad 0.068 {\pm} 0.006$
$0.081 \qquad 0.25 {\pm} 0.03 \qquad 0.0007 {\pm} 0.0003 \qquad 0.069 {\pm} 0.013$
0.095 0.31±0.03 0.0013±0.0006 0.095±0.012
$0.109 \qquad 0.28 {\pm} 0.04 \qquad 0.0032 {\pm} 0.0007 \qquad 0.135 {\pm} 0.030$
0.122 0.37±0.05 0.0015±0.0001 0.131±0.028

Table S 5 Fit Parameters of the intermediate scattering function of the microemulsion inside the hydrophobic CPG50-CH $_3$

q (1/Å)	Α	Γ_c (1/ns)	Γ_z (1/ns)
0.032	$0.06 {\pm} 0.01$	$0.0006 {\pm} 0.0001$	$0.128{\pm}0.023$
0.041	$0.10{\pm}0.01$	$0.0006 {\pm} 0.0001$	$0.056{\pm}0.008$
0.050	$0.13{\pm}0.02$	$0.0007 {\pm} 0.0001$	$0.051{\pm}0.008$
0.060	$0.16{\pm}0.02$	$0.0009 {\pm} 0.0001$	$0.066 {\pm} 0.007$
0.071	$0.19{\pm}0.01$	$0.0012{\pm}0.0001$	$0.095 {\pm} 0.010$
0.081	$0.26 {\pm} 0.02$	$0.0012{\pm}0.0002$	$0.080{\pm}0.009$
0.095	$0.29{\pm}0.02$	$0.0028 {\pm} 0.0005$	$0.154{\pm}0.019$
0.109	$0.37 {\pm} 0.03$	$0.0029 {\pm} 0.0006$	$0.142{\pm}0.018$
0.122	$0.44{\pm}0.03$	$0.0038 {\pm} 0.0008$	$0.168{\pm}0.019$

Table S 6 Fit Parameters of the intermediate scattering function of the microemulsion inside the hydrophilic CPG100-OH

q (1/Å)	Α	Γ_c (1/ns)	Γ_z (1/ns)
0.032	$0.12{\pm}0.02$	$0.0004{\pm}0.0001$	$0.024{\pm}0.003$
0.041	$0.15 {\pm} 0.02$	$0.0005 {\pm} 0.0001$	$0.031{\pm}0.004$
0.050	$0.20{\pm}0.03$	$0.0006 {\pm} 0.0002$	$0.032{\pm}0.006$
0.060	$0.21{\pm}0.02$	$0.0014{\pm}0.0002$	$0.076 {\pm} 0.011$
0.071	$0.28{\pm}0.02$	$0.0015 {\pm} 0.0002$	$0.079 {\pm} 0.008$
0.081	$0.39 {\pm} 0.03$	$0.0010{\pm}0.0004$	$0.063 {\pm} 0.007$
0.095	$0.30{\pm}0.03$	$0.0051{\pm}0.0007$	$0.183{\pm}0.025$
0.109	$0.42{\pm}0.04$	$0.0031{\pm}0.0011$	$0.149{\pm}0.021$
0.122	$0.48{\pm}0.05$	$0.0024{\pm}0.0014$	$0.149{\pm}0.022$

Table S 7 Fit Parameters of the intermediate scattering function of the microemulsion inside the hydrophobic CPG100-CH₃

q (1/Å)	Α	Γ_c (1/ns)	Γ_z (1/ns)
0.032	$0.09{\pm}0.01$	$0.0009 {\pm} 0.0001$	$0.055 {\pm} 0.010$
0.041	$0.15 {\pm} 0.02$	$0.0010{\pm}0.0001$	$0.040 {\pm} 0.005$
0.050	$0.20{\pm}0.02$	$0.0011{\pm}0.00001$	$0.046 {\pm} 0.006$
0.060	$0.22{\pm}0.02$	$0.0018{\pm}0.0002$	$0.071{\pm}0.008$
0.071	$0.30{\pm}0.02$	$0.0017{\pm}0.0002$	$0.072{\pm}0.007$
0.081	$0.33{\pm}0.02$	$0.0023{\pm}0.0003$	$0.092{\pm}0.009$
0.095	$0.40 {\pm} 0.02$	$0.0041 {\pm} 0.0006$	$0.136{\pm}0.011$
0.109	$0.44{\pm}0.03$	$0.0059{\pm}0.0007$	$0.178{\pm}0.018$
0.122	$0.56{\pm}0.03$	$0.0055{\pm}0.0011$	$0.152{\pm}0.014$

Fig. S 7 Amplitudes A(q) of the Zilman-Granek contribution to the fitting model given in Eq. 7 in the main paper. For CPG17 the relaxation rate of the concentration fluctuations was fixed in Eq. 7 at $\Gamma_c = 0$. The plot on the left side shows A(q) for the hydrophilic pore surfaces and the right side plot shows A(q) for the hydrophibized pore surfaces.

Table S 8 Fit Parameters of the intermediate scattering function of the microemulsion inside the hydrophilic CPG17-OH, using Eq.7 neglecting the contributions of the concentration fluctuations ($\Gamma_c = 0$)

q (1/Å)	Α	Γ_z (1/ns)
0.032	$0.04{\pm}0.01$	$0.074{\pm}0.027$
0.041	$0.05{\pm}0.01$	$0.048 {\pm} 0.019$
0.050	$0.07{\pm}0.01$	$0.036 {\pm} 0.009$
0.060	$0.08{\pm}0.01$	$0.028{\pm}0.005$
0.071	$0.07{\pm}0.01$	$0.053{\pm}0.010$
0.081	$0.09 {\pm} 0.01$	$0.053{\pm}0.019$
0.095	$0.10{\pm}0.02$	$0.040{\pm}0.014$
0.109	$0.13{\pm}0.04$	$0.031{\pm}0.018$
0.122	$0.13{\pm}0.05$	$0.044{\pm}0.040$

Table S 9 Fit Parameters of the intermediate scattering function of the microemulsion inside the hydrophobic CPG17-CH₃, using Eq.7 neglecting the contributions of the concentration fluctuations ($\Gamma_c = 0$)

	q (1/Å)	Α	Γ_z (1/ns)
1	0.032	$0.20{\pm}0.05$	$0.005 {\pm} 0.003$
	0.041	$0.08{\pm}0.01$	$0.016 {\pm} 0.004$
	0.050	$0.11 {\pm} 0.02$	$0.017{\pm}0.005$
	0.060	$0.09{\pm}0.01$	$0.040 {\pm} 0.006$
	0.071	$0.10{\pm}0.02$	$0.040 {\pm} 0.005$
	0.081	$0.11{\pm}0.01$	$0.047{\pm}0.011$
	0.095	$0.09{\pm}0.01$	$0.091{\pm}0.020$
	0.109	$0.13{\pm}0.01$	$0.092{\pm}0.014$
	0.122	$0.15{\pm}0.02$	$0.079 {\pm} 0.019$