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1 Binomial and Weighted Error Calculation

For calculations of conditional probability we assume binomial uncertainties. The conditional probability and
associated uncertainty are calculated separately for each temperature ramp and assigned a weight to be used in
successive calculations. All values plotted in Figures 5—6 in the main text and in the Supplemental Materials were
calculated using a weighted mean of these measurements. The weight is the product of two component weights,
1.6. W = Wey X Wepr. The first component weight w,,, is the external weight—equal to the quantity of microchannels
tested for that particular measurement. The second component weight w,,, is the standard error (inverse-variance)
for that measurement.

Figures 5 and 6 are both calculated in this manner, and the only difference between the plots is that Figure 6
had data grouped according to their geometry before applying the weighted mean. The restricted data sets plotted in
Figure 6, each having a smaller effective number of measurements, have much larger associated error.

For calculating the standard error of the weighted mean of differently-weighted values, we estimate the effective
number of measurements'*? as n,zf,

heps = (X7 wi)?
X}

(Sh

where w; are the combined weights weyy X Wepp.

For many of the values N,yens = Nyoras (Figure S1(a); black pentagons). This is problematic because the associ-
ated binomial error is zero (Figure S1(b); black pentagons). To account for this, we apply a correction specifically
for these values. We first look at nearby values along the curve of constant N, . In Figure S1(a) these correspond
to horizontal lines and in Figure S1(b) these are downward parabolas. The error of the nearest point along this
parabola (Neyenss = Nyora — 1) is averaged with zero (corresponding to black pentagons). The final ‘corrected’ values
are represented by red stars in Figure S1(b), with dashed red lines indicating the value they are correcting.

One additional note is that this correction was also applied to Neyen s = O for all values of N,y,;. On Figure S1(b)
this is represented by multiple identical overlapping values at (0,0), with the corresponding corrections not shown.

James W. Kirchner. Data Analysis Toolkit 12: Weighted averages and their uncertainties. 2006. URL: http://seismo. berkeley.
edu/~kirchner/Toolkits/Toolkit_12.pdf.
2Philip R. Bevington. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill Companies, 1969.
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Figure S1: Simulated scatter plots of values (for N, < 15) used to perform a non-zero correction to the binomial
error. Each point in (a) corresponds to a point in figure (b) with matching color. Lines correspond to fixed values of
Nioral- Black pentagons indicate unity (Neyens = Niorqar) and are uncorrected values using the standard binomial error
definition. Each pentagon corresponds to a red star in figure(b)—a corrected value calculated by averaging the three
nearest values along the same Ny, line.



2 Supplemental Figures
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Figure S2: Full distribution of FCD size and distance from the center of their closest pockets for data shown in Fig-
ure 4 of the main text, which only shows a portion of the full distribution corresponding to the grey rectangular box.
Here we show also the FCDs that are below the cutoff size, represented by the vertical dashed line (corresponding
to Scaled Radius = 0.32). The plot shows that there are indeed many FCDs that are too small to be considered in
our subsequent analysis. Another good reason to ignore these small FCDs is that some of them are artifacts from the

segmentation method. In our program for detection of large FCDs, these are all filtered out.
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Figure S3: Initial FCD probability, P(FCD;_) (top plot) and final FCD probability P(FCD;) (bottom plot) vs. the
maximum heating temperature 7. P(FCD;_;) and P(FCD;) represent the formation rate of large FCDs before and
after heated to nematic, respectively. P(FCD;) is the baseline value before anything has occurred, which we expect
to be perfectly flat, and we also expect P(FCDy) to be flat as well, to confirm that there were no major trends across
temperatures. An important feature is that there is no significant consistent increase/decrease between P(FCD;) and
P(FCDy). In other words, the overall shape of the data remains mostly unchanged after heating. While there may
be some evolution in the size/distance distribution (not represented by this plot), a general increase/decrease in the
total formation of large FCDs is not a significant enough effect to explain the geometric memory we observe.
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Figure S4: Conditional Probability P(FCD;|FCD;_1) vs. the maximum heating temperature Ty. The graph shows
that this quantity is not influenced by the heating temperature, as expected. If initially no FCD is present in a pocket,
the probability that a FCD will not form there at a later stage is temperature-independent.



& P(FCD/IFCD;—1) o P(FCD;IFCD;_1)

T ER | 2 B

0.8
2>

;;

Q ) 2 )
0% 5 E 5
o £ 5 g
o] 2] = K%
C

S04 H

2

C

(@]

O { } }

o
N
e
e
—e—
—e—
—e—

0.0

'i"i?ﬁ ] L] } |

o
oo
>
s
—

>
E
3
o0.6
| -
o o &) Q
— = — Q.
g 8 IS
S04 5 2 8
il
c
o)
O
0.2
A w=30pm,s=>50pm
v w=36um,s=36pm
0.03; 34 36 38 40 42

Figure S5: Conditional Probabilities: P(FCD;|FCD;_1) (top figure, dark blue diamonds) and P(FCD;|FCD;_,)
(top figure, red circles) vs. the maximum heating temperature 7. Conditional Probability P(FCD;|FCD;_, ) (bottom
figure) vs. Ty, with data grouped according to their geometry (w,s). The plotted data in the top and bottom figures
are like Figures 5 and 6 in the paper, respectively, but they include additional data (indicated in boxes) across the
smectic-nematic phase transition (32.9-33.6C range). The reason for excluding these data from the main paper is
that the images were taken at a later time (about 3 months later), after the sample had partially degraded. The overall
rate of formation of FCDs is larger for these additional data points (so P(FCD;) is abnormally high). Despite this,
P(FCD;|FCD,;_,) is consistently reduced compared to the data point at 32C, even when the sample is barely heated
such that 7 does not exceed the Sm-Nm transition temperature. This indicates that slight rearrangement of FCDs
occurs in the Smectic-A phase.



Figure S6: Close-up image of microchannels taken in the nematic phase with brightfield microscopy. Disclinations
are visible as black spots. This image was taken at 33.3C, with 33.1C being the smectic-nematic transition (as
measured with our specific setup and temperature controller), for reference.
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Figure S7: Successive closeups of microchannels to show the evolution of boojums in the nematic phase in between
temperature ramps. The columns (a-d) represent different sequences of images taken at different locations. Within each
column, four images (arranged vertically) are taken in chronological order during a temperature ramp, with temperatures
indicated below each image. In (a-d), the first (uppermost) image is taken in the smectic phase before heating and the
third image is taken again in the smectic phase after heating/cooling. The images in the second and fourth rows are
taken respectively during the first heating/cooling cycle and during subsequent heating. Black arrows are pointed towards
boojums in images taken in the nematic phase. (a) This image sequence shows a +1 diverging boojum that is fixed at
its position throughout successive ramps both in smectic and nematic phase. This is an example of a defect pinned by
a dust speckle or surface impurity. (b) In this position we see a +1 diverging boojum that seems to be lost in the first
heating/cooling cycle (the second image is taken after heating to isotropic phase and cooling in nematic phase) but then
reappears at the center of a FCD and is finally visible in the nematic phase after heating to nematic. (c) This sequence
shows initially a large FCD and some neighboring small FCDs. In nematic phase after heating to isotropic (second row),
only two boojums are visible, one of which with negative topological charge. While cooling again in smectic phase, only
small FCDs form, with the boojums in between them. Upon reheating, more boojums become visible. (d) The last column
show defects that are still visible while in the nematic phase (possibly +1 converging boojums, observed rarely in our
microchannels). The second row is taken before the sample is brought to the isotropic phase. Upon cooling the FCDs are
maintained, but upon subsequent heating some of the boojums disappear.
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