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David Evans, José Martin-Roca, Nathan J. Harmer, Chantal Valeriani and Mark A. Miller

S1 Changing Péclet number via the active force

The dimensionless Péclet number Pe = 3FaDt/σkBTDr can be systematically varied in several ways. The
results in Fig. 2(b) of the main text have been produced by changing the rotational diffusion constant
Dr. We have also tested the behaviour of the system when Pe is changed by varying the propulsion force,
Fa.

Figure S1 compares the dependence of the percolation threshold of two-dimensional active Brownian
particles (ABPs) on the Péclet number when Pe is controlled by varying the rotational diffusion coefficient
and the propulsion force. The two curves have the same qualitative shape, with a minimum in the
threshold between Pe = 10 and Pe = 15. In the case where the Péclet number is changed by varying
the propulsion force, the motility-induced phase separation (MIPS) boundary occurs at a lower Péclet
number than in the case where it varies with the rotational diffusion coefficient,1 and so it is not possible
to probe the percolation threshold beyond Pe = 30 within the one-phase regime.

S2 Dependence of percolation on the connectivity distance

In the main article we chose a connectivity distance of λ = 1.3. This value gives percolation in a density
regime where we may study a large interval of Pe without encountering MIPS. To test the sensitivity of
our results, we have also calculated the percolation threshold at different connectivity distances as shown
in Figure S2. Re-entrant percolation is observed for connectivity distances in the range 1.2 ≤ λ ≤ 1.4.
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Figure S1: Percolation threshold versus Péclet number for active Brownian particles where the activity
is changed using the rotational diffusion Dr or by the propulsion force Fa.
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Figure S2: Percolation threshold as a function of Péclet number at different values of the connectivity
distance, λσ. Each curve is scaled by the threshold at Pe = 0.
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Figure S3: The total square deviation, χ2, between the target radial distribution function and the radial
distribution function from the trial potential at each iteration of IBI at Pe = 2.

S3 Convergence of iterative Boltzmann inversion

After each iteration of the iterative Boltzmann inversion (IBI) scheme, we calculate the sum of the squared
deviations between the target radial distribution function (RDF) and the RDF from that iteration’s
simulation as

χ2 =
∑
i

[g (ri)− gtarget (ri)]
2
. (S1)

We terminate the iterative scheme when the value of χ2 levels out and successive iterations do not improve
the trial potential. Figure S3 shows χ2 for each iteration during IBI for Pe = 2 where convergence is
reached within 35 iterations.

S4 Percolation threshold of square-well disks

We have measured the percolation threshold of passive hard disks with a square-well potential (Eq. 7 in
the main article) as one of the simplest models with conservative attractive interactions. The passive
simulations were carried out using the standard Metropolis Monte Carlo (MC) algorithm with single-
particle moves.
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Figure S4: Percolation threshold as a function of square-well well depth for different square well ranges
λSW of 1.3, 1.1 and 1.05 and constant connectivity distance λ = 1.3. The percolation threshold decreases
monotonically as the level of attraction in the system increases.

As seen in Fig. S4, the percolation threshold is a monotonically decreasing function of increasing well
depth for all values of the square-well attraction range λSW at a fixed connectivity range of λ = 1.3.
As in our characterisation of active systems, where we restrict our study of percolation to the one-phase
region before MIPS, here we do not enter the gas–liquid phase-separated region of the phase diagram,
which occurs above ϵ/kBT = 1.3.

S5 Mapping active disks onto passive square-well disks

The effective potentials produced by iterative Boltzmann inversion, seen in Fig. 4(b) of the main text,
are attractive with a pseudo-hard core repulsion. Both the depth and the range of the attraction evolve
with increasing activity. To make a link with the square-well potential, we can match the depth of the
effective potential of the ABP to the square-well depth parameter ϵSW (Eq. 7 of the main text) and then
determine the square-well range λSW by equating the second virial coefficients B2. In general in two
dimensions for particles interacting via pairwise potential V (r),

B2 = −1

2

∫ ∞

0

[
exp

(
−V (r)

kBT

)
− 1

]
2πrdr. (S2)

For the square well, the result is

B2 = −πσ2

2

[(
eϵSW/kBT − 1

) (
λ2
SW − 1

)
− 1

]
. (S3)

Inverting yields

λSW =

√
2B2/πσ2 − exp (ϵSW/kBT )

1− exp (ϵSW/kBT )
, (S4)

which can be evaluated by substituting the numerically integrated B2 from the ABP effective potentials.

The effective second virial coefficient as a function of Pe is shown in Fig. S5(a). As expected, B2

decreases monotonically with increasing activity, changing from positive to negative when the effective
attraction dominates over the repulsive core. The effective square well range is plotted in Fig. S5(b). By
about Pe = 2, it has settled down at λSW = 1.23. Beyond that point the ongoing decrease in B2 arises
from further deepening of the effective potential rather than broadening of the interaction range.

S6 Characterising structural differences

Iterative Boltzmann inversion (IBI) found pairwise potentials that reproduced the radial distribution
function g(r) very well. However when a MC simulation was performed with the resulting potentials,
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Figure S5: (a) The effective second virial coefficient B2 of ABPs as a function of Péclet number, calculated
from the effective potentials derived from iterative Boltzmann inversion. (b) The effective square-well
range λSW as a function of Péclet number calculated from B2 and the mapping in Eq. S4.

the percolation properties were not accurately reproduced, implying that many-body interactions are
significant. We have calculated a number of structural quantities to characterise the differences between
the active and passive systems.

S6.1 Coordination number

As defined in the main text, the coordination number is the number of particles that are connected to a
given particle. We consider particles to be connected if their centres are separated by less than λσ = 1.3σ.
The mean coordination number per particle ⟨n⟩ is averaged over all particles and sampled configurations,
and gives a measure of the local connectivity in the steady state.

Figure S6 shows the mean coordination number as a function of activity at a constant density of ρ =
0.54σ−2 for the active and the mapped passive systems. The passive data are from MC simulations using
the effective potentials produced using IBI up to Pe = 10, beyond which IBI fails to return an effective
potential that accurately reproduces g(r) from the active simulations. The mapped passive system
reproduces the mean coordination number of ABPs well, as might be expected because coordination
number is closely related to the first peak of g(r), which we know to be accurately captured by the
effective potential.

S6.2 Radius of gyration

The radius of gyration Rg of a cluster is the root mean squared distance of particles from the cluster’s
centre of mass:

R2
g =

1

s

s∑
i

|ri − rcm|2 , (S5)

where ri is the position of the ith particle in the cluster, and rcm is the position of the centre of mass,
rcm = s−1

∑s
i ri.

Figure S7 shows the mean radius of gyration ⟨Rg⟩ as a function of cluster size for the active and
passive systems at Pe = 2 and ρ = 0.54σ−2. Percolating clusters are excluded from the average, since
they represent infinite clusters once the periodic boundary conditions are considered. Statistics are
gathered for each cluster size up to s = 10 in steps of 1. Thereafter, clusters are averaged over a range of
sizes with the lower edge of each bin obtained by multiplying the previous edge by 1.6. The geometrically
increasing bin width compensates for the increasingly rarity of larger clusters and produces a regular
spacing on a logarithmic axis.

Over about two decades, 10 ≲ s ≲ 1000, Rg scales approximately as s0.5, as expected for non-
fractal clusters in two dimensions. Larger cluster sizes are more strongly affected by the finite size of
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Figure S6: Average coordination number ⟨n⟩ as a function of Péclet number at ρ = 0.54σ−2 for active
and passive systems. The passive data are from MC simulations using the effective potentials from IBI
and stop at Pe = 10, after which an accurate effective potential cannot be obtained.
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Figure S7: Rg, for clusters of size s for the passive and active systems at Pe = 2 and ρ = 0.54σ−2.

the simulation cell since the average is restricted to clusters that contain many particles but do not
connect across the periodic boundary conditions and therefore are likely to have a smaller average radius
of gyration than free clusters with the same number of particles in a larger cell. Deviations between the
Rg distributions of the passive and active cases are small, but we note that percolation is very sensitive to
details of cluster shape; at the percolation threshold itself, connectivity of a given cluster may be gained
or lost by a small displacement of a single particle.

S6.3 Cluster size distribution

Let ns be the probability that a randomly chosen cluster contains s particles and does not percolate.
The probability that a randomly chosen particle belongs to a non-percolating cluster of size s is then
sns. Fig. S8 shows both definitions of the cluster size distribution. As in the calculation of the radius of
gyration in Sec. S6.2, logarithmic binning is applied (but here starting from s = 50).

As demonstrated by the black line in Fig. S8(b), ns follows the normal scaling ns ∼ s−τ away from
the critical density, with the expected value of the exponent τ = 187/91 in two dimensions.2 The active
and passive distributions are barely distinguishable. The particle-based distribution sns in Fig. S8(a)
highlights small differences for clusters larger than s = 100. Naturally, it is the largest clusters that we
expect to influence the onset of percolation most strongly.
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Figure S8: Cluster size distributions, (a) sns and (b) ns, both at ρ = 0.54σ−2 and Pe = 2 for the active
and passive systems. The black line in (b) shows the accepted value of the critical exponent2 for the
cluster size in two dimensions, τ = 187/91.
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Figure S9: The local density distributions calculated as the inverse Voronoi area at ρ = 0.51σ−2 and
ρ = 0.54σ−2 for (a) Pe = 1, (b) Pe = 2, and (c) Pe = 10. Solid lines are passive systems and dashed lines
are active systems.

S6.4 Local density distribution

A Voronoi analysis of a configuration associates an area with each particle, the inverse of which is a
measure of the local density at that point. The distributions of this local density for the active and
passive systems at two number densities are shown in Fig. S9.

Agreement is good but not perfect even at the lowest activity of Pe = 1. The discrepancies increase
with activity and are more prominent at the higher density. Hence, the Voronoi analysis reveals discernible
differences in the local structure, despite the accurate reproduction of the mean coordination number
(Fig. S6).

S6.5 Conditional nearest neighbour distribution function

Given a circular region of space of radius r that does not contain any particle centres, the probability
that a particle centre lies in a shell of thickness dr around this area is 2πrρGV(r)dr,

3,4 where GV (r) is
the conditional nearest neighbour distribution. GV (r) can formally be expressed in terms of two- and
many-body correlation functions of the structure3,4 and is therefore one way to detect any difference in
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Figure S10: Comparison of the conditional nearest neighbour distributions, GV (r), of the active and
passive systems for (a) Pe = 1, ρ = 0.55σ−2, (b) Pe = 2, ρ = 0.545σ−2, and (c) Pe = 10, ρ = 0.525σ−2.

structure beyond pairwise functions like g(r).

Fig. S10 shows GV(r) for three different Péclet numbers, each evaluated at the density where there
is the biggest difference in percolation probability between the active and mapped passive simulations.
Up to r = 0.5σ, GV (r) is fully determined by the density, since a circular region with diameter smaller
than the particle diameter cannot contain more than one particle centre if the particles are impenetrable.
Hence, the initial part of GV (r) is identical for the active and passive simulations in each case.

For r > 0.5σ, however, differences between the active and passive systems are readily seen with
increasing Pe, indicating the presence of many-body correlations in the active system that are absent (by
construction) in the passive simulations with the effective pairwise potential. We note that the range of
these differences is only on the order of a particle diameter, demonstrating that the structure of the active
system differs even at this local scale from the passive system, even though their pairwise structures, as
measured by g(r) are virtually identical.
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