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S1 Fit Parameters Related to the Specific Energy and Mean Squared Interparticle Spacing
Here, we provide the fit parameters εs,0 and ε∗s utilized in constructing Fig. 1 in the main text regarding the relation between εs and
⟨u2⟩/kBT . Fig. S1 and Table S1 summarize the results for polymer melts and metallic glasses, respectively. Note that εs is positive in
polymer melts, while this quantity is negative in metallic glasses, so the sign of εs,0 is different in these two types of models. In addition,
we provide the fit parameters a and b utilized in constructing Fig. 2 in the main text regarding the relation between qp and kBT . Fig.
S2 and Table S2 summarize the results for polymer melts and metallic glasses, respectively.
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Fig. S1 Fit parameters εs,0 and ε∗s as a function of P utilized in constructing Fig. 1a and 1b in the main text for the relation between εs and ⟨u2⟩/kBT .
Panels (a) and (b) correspond to the results of both flexible and semi-flexible polymer melts for εs,0 and ε∗s , respectively.

Table S1 Fit parameters εs,0 and ε∗s utilized in constructing Fig. 1c in the main text for the relation between εs and ⟨u2⟩/kBT for representative metallic
glasses.

MGs Cu64Zr36 Cu36Zr64 Cu50Zr50 Ni50Nb50 Ni62Nb38 Pd82Si18
εs,0 −4.29 −5.20 −4.75 −5.90 −5.62 −4.33
ε∗s 0.27 0.31 0.27 0.43 0.46 0.24

Table S2 Fit parameters a and b utilized in constructing Fig. 2c in the main text for the relation describing the mean squared interparticle spacing
parameter q2

p over a range of T for representative metallic glasses.

MGs Cu64Zr36 Cu36Zr64 Cu50Zr50 Ni50Nb50 Ni62Nb38 Pd82Si18
a 58.09 49.31 45.61 51.98 54.32 49.18
b 0.76 10.32 14.90 5.56 6.79 12.81
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Fig. S2 Fit parameters a and b utilized in constructing Fig. 2a and 2b in the main text for the relation describing the mean squared interparticle
spacing q2

p over a range of T for polymer melts. Panels (a) and (b) correspond to the results of both flexible and semi-flexible polymer melts for a and
b, respectively.
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Fig. S3 Static structure factor S(q) of flexible polymer melts for a range of T at P = 0.0ε/σ3. The dotted lines are the fitted results according to the
Lorentz equation (Eq. 1). The results at lower T are shifted up by 0.5 from the preceding one.

We also discuss the T dependence of the primary peak position qp of S(q) in greater detail. In the case of the polymer melt data, we
estimate qp more accurately by fitting the simulation data for S(q) to the Lorentz equation,

S(q) = D
[

C
(q−qp)2 +C2

]
(1)

where D and C are the additional fitting parameters. The fits were performed in the range of 6σ−1 < q < 9σ−1, since qp is found to be
generally about 7σ−1 in our polymer model. Fig. S3 shows the S(q) of flexible polymer melts for a range of T at P = 0.0ε/σ3, along
with the fitted results. As can be seen, Eq. 1 provides a satisfactory description of S(q) in the q range near qp.

We note that the T dependence of q2
p under constant density conditions is normally quite distinct from the material under constant

P conditions. Fig. S4 shows q2
p for the 32-atom single-component LJ liquid over a wide range of T at ρ = 1.0σ−3, where it is evident

that q2
p has virtually no T dependence. Fig. S5 compares q2

p under constant P and ρ conditions for the Kob-Andersen model as a further
illustration of the distinct T dependence of q2

p under adiabatic and isobaric conditions for the same GF liquid. Overall, the general trends
in the T dependence of q2

p are the same as in the polymeric and 32-atom LJ fluids discussed above. We note that the T dependence of
q2

p for the polymeric fluids under constant density conditions is more complicated than for atomic fluids, so we avoid discussing this
rarely encountered physical condition in the present paper.
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Fig. S4 Mean squared interparticle spacing q2
p as a function of 1/T for the 32-atom LJ fluid at the density of ρ = 1.0σ−3.
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Fig. S5 Mean squared interparticle spacing q2
p as a function of 1/T for the A particles of the Kob-Andersen fluid. Panels (a) and (b) correspond to

the results for fixed ρ and P conditions, respectively.

S2 Relation Between the Non-Ergodicity and Debye-Waller Parameters: A Quantitative Measure of Ergod-
icity

In the weak ergodicity regime, the dynamics of the material is not strongly chaotic, and the initial fast β -relaxation observed in the
self-intermediate scattering function Fs(q, t), driven by the chaotic degrees of freedom, is followed by a metastable non-ergodic state
associated with emergent integrable degrees of freedom or “regular motions” in the dynamical system that can persist for a much longer
time than the initial fast β -relaxation time, τ f β . The relaxation time of the secondary relaxation or α-relaxation time, τα , governs the
ultimate equilibration time of the system and the relative amplitude of the α-relaxation process defines the “non-ergodicity” parameter,
fs,q∗ , where the common assumption of taking qp equal to a constant q∗ is adopted for simplicity. Correspondingly, the amplitude of the
fast β -relaxation process, 1− fs,q∗ , defines a measure of the degree of ergodicity of the material system. The “non-ergodicity” parameter
plays a large role in the modeling of the boson peak in GF liquids and heated crystals.1

We show a representative example of the multistep decay of Fs(q, t) for the polymer melt in Fig. S6 based on the approximate
expression,2,3

Fs(q∗, t) = (1− fs,q∗)exp
[
−(t/τ f β )

β f
]
+ fs,q∗ exp

[
−(t/τα )

βα

]
(2)

where β f and βα quantify the non-exponential nature of the fast β - and α-relaxation processes. It is emphasized that Eq. 2 is not
justified by any rigorous theory, but this relation provides a good empirical summary of our data, apart from some notable deviations in
the intermediate time regime near t = 1τref at low T . To avoid bias in the fitting of the relaxation times (τ f β and τα ) and non-exponential
index parameters (β f and βα ) in the fast β - and α-relaxation processes, these relaxation processes are fitted independently.4 The fitting
parameters obtained generally follow the pattern found by Yang et al.4 In particular, β f varies in a range between 1τref and 2τref as T
is varied, while βα varies between 0 and 1. The fast β -relaxation time τ f β in molecular fluids increases slowly upon cooling, but this
timescale remains on the order of a ps in the T range that we can simulate (see Figs. 7, 17, and 18 in the paper of Yang et al.4 for
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Fig. S6 Self-intermediate scattering function Fs(q, t) of polymer melts for a range of T . Panels (a) and (b) correspond to the results for flexible and
semi-flexible polymer melts, respectively. Fs(q, t) exhibits the universal multistep decay of relaxation in glass-forming liquids initiating near the onset
temperature TA, which is well above the glass transition temperature Tg. Lines are the fits to Eq. 2, which serve to guide the eye. The wave number
is chosen to be q = q∗ ≈ 7.0σ−1, which is close to the first peak position of the static structure factor.

an illustration of this typical behavior). The α-relaxation time τα , sharply rises upon cooling, approaching a value near 100 s at the
glass transition temperature in experimental systems, a timescale that cannot be reached by MD simulations under quasi-equilibrium
conditions.
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Fig. S7 Relation between the non-ergodicity parameter fs,q∗ and the Debye-Waller parameter ⟨u2⟩. Panel (a) shows the results for polymer melts
having variable P. Filled and open symbols correspond to the results for flexible and semi-flexible polymer melts, respectively. Panel (b) shows the
results for representative metallic glasses. The caging onset time was taken to be t = 1.5 ps. Panel (c) shows the results for the 32-atom LJ liquid.
Lines show the scaling relations, as indicated in the figure.

We may directly determine the non-ergodicity parameter fs,q∗ by fitting the α-relaxation process of Fs(q, t) to the expression, Fs(q, t)∼
exp[−(t/τα )

βα ]. For generality, we summarize data below for both polymer melts and metallic glasses. fs,q∗ is the short-time plateau
value of Fs(q∗, t) at the onset of the caging regime, which is a timescale on the order of the fast β -relaxation time. This observation
allows us to develop a general approximation of fs,q∗ in terms of the “fast dynamics” property, ⟨u2⟩, the mean squared displacement
of particles on the caging onset timescale. In the fast β -relaxation regime, the non-Gaussian parameter α2(t) is generally small in
magnitude so that fs,q∗ can generally be well described by the Gaussian approximation,

fs,q∗ ≈ exp
[
−c(q∗)2⟨u2⟩/6

]
(3)

where c is a constant. A similar approximation evidently holds for the collective intermediate scattering function.5 Previous simulation
studies on linear and star polymer melts have indicated that Eq. 3 provides an excellent approximation of the simulation estimates of
fs,q∗ in linear polymer melts having variable stiffness, chain length, and pressure and over a wide range of temperatures, where the
interparticle distance parameter q∗ was assumed to be constant.4,6 For illustration, we show fs,q∗ for the polymer models studied in the
present paper in Fig. S7a, where we find that the relation between fs,q∗ and ⟨u2⟩ can be described by Eq. (3) very well.

To further check the universality of the relationship between fs,q∗ and ⟨u2⟩, we consider the applicability of Eq. 2 to the simulation
estimates of fs,q∗ for the metallic glasses and 32-atom LJ fluid studied in the main body of the paper in Fig. S7b and S7c, respectively.
Again, the reduction to the form predicted by Eq. 2 is impressive. We also test Eq. 2 against a large body of simulation data for the
Kob-Andersen model in Fig. S8a, a model simulated GF liquid, over a wide range of constant density and constant volume conditions.
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Fig. S8 Relation between the non-ergodicity parameter fs,q∗ and the Debye-Waller parameter ⟨u2⟩. Panel (a) shows the results for the binary Kob-
Andersen model. Filled and open symbols correspond to the results for constant volume and constant pressure conditions, respectively. Panel (b)
shows the results for a series of crystalline metallic materials. The caging onset time was taken to be t = 1.5 ps. Lines show the scaling relations, as
indicated in the figure.

Finally, we summarize fs,q∗ for a range of crystalline metallic materials in Fig. S8b. In each material, we find excellent accord with Eq.
2. We then conclude that the estimated “degree of ergodicity” fs,q∗ is a near universal function of (q∗)2⟨u2⟩ in a wide variety of liquids.

Parenthetically, we note that all of the data in the present paper are for GF liquids, except for the data shown in Fig. S8b for a range
of crystalline metallic materials. These data were taken to check the applicability of Eq. 3 to crystalline materials. MD simulations were
employed to investigate various representative crystalline materials studied previously with this relation in view. The materials include
models of iron (Fe), tungsten (W), zirconium (Zr), aluminum (Al), copper (Cu), and titanium (Ti). The representative body-centered
cubic (BCC) metals (Fe and W) under the thermodynamic conditions of our simulations consist of 13718 atoms, and the representative
face-centered cubic (FCC) metals (Cu and Al), the hexagonally packed (HCP) crystals (Zr) consist of 13500 atoms and the Ti crystalline
material consists of 32000 atoms.7 The interaction potentials of all the metals were described using rather standard EAM potentials.7–11

Each crystal simulation cell was initially relaxed at room temperature (300 K), and then gradually increased temperature (with the
heating rate of 1011 K/s) until the model transitioned into a liquid state to obtain binary restart files containing the current simulation
state at each temperature of interest. Throughout the heating simulation process, the NPT ensemble with zero pressure was utilized,
and the dynamic properties of each metal were obtained through an isothermal heating (NV T ) progress. It is emphasized that all
temperatures selected for NV T simulations remained below the melting points. Additionally, the periodic boundary conditions were
applied, and a time step of 1 fs was used.
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