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S1 List of SI Videos

• SIVideo1 DifferentFlowSpeedsDIWater.avi - Glass rods in DI water at different flow rates

(2.5 mL/h, 5 mL/h, 10 mL/h)

• SIVideo2 2.5mLperhNaCl.avi - Glass rods in a flow rate of 2.5 mL/h in different solvents

(DI water, 10-5 M NaCl, 10-4 M NaCl)

S2 Determination of the Debye length

The Debye length λD is given by Equation S1 and is essential to predict the electrostatic

interaction between rod and substrate.
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λD = κ−1 =

(
e2NA

ε0εrkBT

∑
i

ci

)−1/2

(S1)

In the sum of the concentrations of ions present in the solution (
∑

i ci) different contributions

have to be considered:

• H+ and OH– : 10−7M for each ion at pH 7 → 2× 10−7M

• CO2 from the ambient atmosphere forms H2CO3 and dissociates to H+ and HCO3
– in the

solution. The concentrations can be determined by measuring the electrical conductivity

and using the molar conductivity

• The added NaCl with a known concentration

While the concentrations of H+, OH– and the added NaCl are known, the contribution from

H+ and HCO3
– from ambient CO2 has to be determined, which can be done using the specific

conductivity κconduct of the solution. As the concentrations are very low, we can estimate, that

κconduct = cΛ0
m. Here, Λ0

m is the limiting molar conductivity at infinite dilution, which can be

calculated from the limiting molar conductivities of the individual ions [1]:

Λ0
m(H

+ + HCO3
-) =λ0

m(H
+) + λ0

m(HCO3
-)

Λ0
m(H

+ + HCO3
-) =(349.65 + 44.5) · 10−4 m2S/mol

Λ0
m(H

+ + HCO3
-) =394.15 · 10−4 m2S/mol

The DI water used in the experiments had a specific conductivity of κconduct = 0.59 µS/cm.

Subtracting the specific conductivity of ultrapure water and dividing by the limiting molar

conductivity, we get the concentration of H+ and HCO3
– originating from ambient CO2:

c(H+ + HCO3
-) =

κconduct − κconduct(ultrapure)

Λ0
m(H

+ + HCO3
-)

c(H+ + HCO3
-) =

0.59 µS/cm− 0.055 µS/cm
394.15 · 10−4 m2S/mol

c(H+ + HCO3
-) =1.36 · 10−6 mol/L
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The expected contribution of the conductivity of NaCl (Λ0
m(NaCl) = 126.39 · 10−4 m2S/mol) [1]

to the total specific conductivity can be estimated and the values are summarised in Table S1.

Looking at the measured conductivity of the 10-6 M NaCl it is noteworthy, that measured

conductivity shows a higher increase than expected purely from the contribution of NaCl. We

explain this by a longer preparation process of the NaCl solutions, where they are exposed to

ambient CO2. Therefore, we assume this contribution for all concentrations of NaCl.

Table S1: Determination of Debye length using the specific conductivity.

Solution κconduct κconduct(NaCl) c(CO2) Debye length
in µS/cm in µS/cm in µM in nm

DI water 0.59 0 1.36 254
10-6 M NaCl 1.57 0.126 3.5 143
10-5 M NaCl 2.56 1.26 3.5 83
10-4 M NaCl 12.63 12.63 3.5 30

S3 Determination of the height.

S3.1 Measuring height using the velocity v

For a Poiseuille flow through square H × H cross-section in the x direction of a long channel

and a given volumetric flow rate Q, pressure gradient G = − dp
dx

and viscosity η the flow field

u(y, z) is given by the following equation: (as derived by Boussinesq) [2]

u(y, z) =
G

2η
y(H − y)− 4GH2

ηπ3

∞∑
n=1

1

(2n− 1)3
sinh(βnz) + sinh[βn(H − z)]

sinh(βnH)
sin(βny)

βn =
(2n− 1)π

H
,

Q =
GH4

η

(
1

12
− 16

π5

∞∑
n=1

1

(2n− 1)5
cosh(βnH)− 1

sinh(βnH)

)

The relation for the flow rate can be approximated

Q ≈ 0.035
GH4

η
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from which we can estimate pressure drop

G = 28.6
ηQ

H4
= 7.94

Pa

m
· q

where q = Q/
(
mL
h

)
is the non-dimensional flow rate.

We assume that we are close to the bottom in the z-direction, i.e. z/H ≪ 1 very small, and to

be in the centre of the channel in the y-direction, y = H
2
, giving the velocity profile:

u(z) ≈ 0.38
GH2

η

z

H
+O

(
z2
)

Replacing G = 28.6 ηQ
H4 we obtain

u(z) = γ̇z +O
(
z2
)

(S2)

with the (close to the wall) shear rate given by

γ̇ = 10.87
Q

H3
(S3)

Assuming that a rod in a shear flow is moving with the velocity of the fluid at its center of

mass (z), the velocity v is given as:

v(z) = γ̇ · z

z = h+ r

Where h and r are the (surface-surface) height and the radius of the rod. The obtained data

for the different concentrations of NaCl are summarized in Table S2.
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Table S2: Height between rod and substrate measured using the velocity.

Solution v at 5 mL/h in µm/s z in nm h in nm

DI water 36.8 2440 940
10-6 M NaCl 26.6 1760 260
10-5 M NaCl 23.5 1560 60
10-6 M NaCl 26.6 1030 -470

S3.2 Prediction of height considering the potential as the sum of

electrostatic interaction and gravity

According to [3], the electrostatic interaction potential of a rod with a length L, radius r, a zeta

potential ζrod and a height h with a wall with a zeta potential ζwall is given as:

UE (h) = 64πLB

√
κr

2π
e−κh (S4)

B = ε0εr

(
kBT

e

)2

tanh

(
eζrod
4kBT

)
tanh

(
eζwall

4kBT

)
With a density mismatch between rod and solvent ∆ρ the gravitational potential is given as:

UG (h) = πr2Lg∆ρ h

Balancing the two potentials (minimizing U (h) = UE + UG) we get

U ′ (h) = 0 = πr2Lg∆ρ− 64πLBκ

√
κr

2π
e−κh

h =
1

κ
ln

(
64Bκ

√
κa
2π

r2g∆ρ

)
(S5)

For ζrod = −36 mV (experimental value), ζwall = −40 mV (estimated value for glass), the

Debye lengths κ−1 from Table S1 and ∆ρ = 1.6 g/cm3 we get the following heights summarized

in Table S3.
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Table S3: Height between rod and substrate predicted considering the potential as the sum of
electrostatic interaction and gravity.

Solution Debye length in nm h in nm

DI water 254 1520
10-6 M NaCl 143 980
10-5 M NaCl 83 640
10-4 M NaCl 30 280

S3.3 Measuring height using the rotational diffusion

A micro rod near a wall shows translational diffusion in the perpendicular and parallel direction

with respect to the rod long axis (D⊥ and D∥) and rotational diffusion parallel to the wall

normal (Drot), which are influenced by the presence of the nearby wall and therefore can be

used to estimate the height. The rotational diffusion (Drot) will be used here and a prediction

from Hunt et al. was applied to quantify the influence of a wall on its magnitude. [4] There, the

rotational friction coefficient near a wall (ξrot) is given as:

ξrot =
4πη

cosh−1(z/r)
·
L3
1 + L3

2

3
(S6)

Here, L1 and L2 are the distances of the ends from the rotation axis and if it is located at the

centre of the rod we get L1 = L2 = L/2. z is the z-position of the center of mass and therefore

h = z− r. The diffusion coefficient is given as: Drot =
kbT

ξrot
which leads to Equation S7. As the

used rods are only homogeneous in diameter but not in length we have to consider the length

(Figure S1a) of the rod and determine the height by fitting the experimental data of Drot(L)

to Equation S7 to get the height h. An example with data obtained in DI water is displayed

in Figure S1b and results are summarized in Table S4.

Drot(L) =
3 · cosh−1((h+ r)/r)kbT

πηL3
(S7)
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Figure S1: (a) Histogram of lengths of glass micro rods, (b) Experimental data of Drot(L) for
glass rods in DI water with the corresponding fit (h = 1070 nm).

Table S4: Height between rod and substrate measured using the velocity.

Solution Drot(L = 18 µm) in s-1 h in nm

DI water 8.6× 10−4 1070
10-6 M NaCl 8.4× 10−4 1020
10-5 M NaCl 7.2× 10−4 730
10-4 M NaCl 5.3× 10−4 380

S4 The motion-angle - director-angle correlation

S4.1 Coupling between translation and rotation

Similar to the work of Teng et al., the coupling between translation and rotation is given by the

resistance matrix R (Equation S8). [5] Here, F⊥ and N are the force in the orthogonal direction

with respect to the long axis and the torque around the long axis, respectively. v and ω stand

for the velocity orthogonal to the long axis and the angular velocity around the long axis,

respectively.
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 F⊥

N

 =

 R11 R12

R21 R22


 v

ω

 (S8)

To get the velocity of a rod rotating at a certain height from the substrate, we apply a force-free

rotation (F⊥ = 0) the resulting velocity is now:

v = −R12

R11

ω

We can fit the values for R12 and R11 derived by ref [5] using OpenFoam simulations as:

R11 = −η

(
4π

log
(
1 + δ +

√
2δ + δ2

)L+
15δ

δ + 0.005
r

)

R12 (δ) = ηr2
32

3π
log

(
0.114

δ
+ 0.904

)

Where, L and r are the length and radius of the rod, η is the viscosity and δ = h/r. Looking

at the resulting velocities normalized to perfect coupling (ω · r) (Figure S2), we get low values

in the range of 10−3 to 10−2, with a maximum at a height of 70 nm. Notably, the coupling

becomes weaker with the increasing length of the rod, as it originates from end effects.
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Figure S2: Velocity resulting from a force-free rotation of a rod with r = 1.5 µm and different
lengths normalized on ω · r.
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S4.2 Anisotropic mobility

Here, we investigate the origin of the non-trivial relation between the angle of motion β and

the orientation angle α (with respect to the flow direction) in the shear flow. Assuming that

the rod is approximately parallel to the substrate, its orientation vector (director) t is in the

x-y plane and can be expressed in terms of the angle α:

t =

 sinα

cosα


The rod moves parallel to the surface with velocity components

v =

 vx

vy


and is acted upon by two types of forces:

1) Bulk drag force, coming from the mismatch of the rods velocity vector with the bulk flow

(in the x-direction) in the rod plane

Fbulk−flow =
(
ξb⊥ (I− tt) + ξb∥tt

)
(vb − v)

vb =

 vb

0

 (bulk flow velocity)

2) Surface drag force, coming from the close to surface lubrication contact.

Fsurf =
(
ξs⊥ (I− tt) + ξs∥tt

)
(0− v)

where the 0 is the vanishing velocity of the wall. Here we introduce the unity operator I and

matrix ”tt” = t · tT (T: the transpose), which is the projector operator onto the director t.

The two sets of friction coefficients
(
ξb⊥, ξ

b
∥

)
and

(
ξs⊥, ξ

s
∥

)
are the contributions coming from the
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pure bulk hydrodynamic friction (b) and pure surface/lubrication contribution (s) respectively.

Total force balance requires 0 = Fbulk−flow + Fsurf which implies the relation

v =
((
ξs⊥ + ξb⊥

)
(I− tt) +

(
ξs∥ + ξb∥

)
tt
)−1 (

ξb⊥ (I− tt) + ξb∥tt
)
vb

Using the usual laws for the projectors, (I− tt) (tt) = 0, (tt)2 = tt, (I− tt)2 = I − uu , the

expression simplifies to

v =

(
ξb⊥

ξs⊥ + ξb⊥
(I− tt) +

ξb∥

ξs∥ + ξb∥
tt

)
vb

= vb
(
r∥ − r⊥

) r⊥
r∥−r⊥

+ sin2 α

cosα sinα



with the two friction ratios r⊥ =
ξb⊥

ξs⊥+ξb⊥
, r∥ =

ξb∥
ξs∥+ξb∥

.

We see that when the surface friction can be neglected (ξs⊥, ξ
s
∥ = 0) we have the trivial solution

v = vb, i.e. as expected the rod moves with the flow speed and direction, regardless of its

tangent t.

Abbreviating

rfr =
r⊥

r∥ − r⊥
=

ξb⊥

(
ξs∥ + ξb∥

)
ξb∥
(
ξs⊥ + ξb⊥

)
− ξb⊥

(
ξs∥ + ξb∥

)
the motion angle w.r.t. the x-axis is then

cos β =
rfr + sin2 α√

(2rfr + 1) sin2 α + r2fr

(S9)

which is the relation used in the main text. Fitting the parameter rfr to our experimental data,

we get a value of rfr = 38 in DI water and smaller values down to rfr = 13 with increasing

concentration of NaCl (Figure S3).
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Figure S3: Relation between the rod orientation angle α and the angle of motion direction β
at a flow rate of 2.5 mL/h in DI water and NaCl with a fit using Equation S9.

S5 Tilting potential of the rod near wall

Before, the height of a rod was determined considering an orientation parallel to the wall. If

we allow now for a slight tilt and introduce a tilting angle τ , the rods total energy is given by

Equation S10 with an interaction potential w (h) density per unit length integrated over the

full length L, where the integral goes over the arc length of the rod s.

W (h, τ) =

∫ +L/2

−L/2

w (h+ s sin (τ)) ds (S10)

Assuming a small tilting angle τ we can Taylor expand w (h+ s sin (τ)) ≈ w (h)+w′ (h) s sin (τ)+

1
2
w′′ (h) s2 sin2 (τ) and the energy simplifies

W (h, τ) = Lw (h) + w′′ (h) sin2 (τ)
L3

24
(S11)

Specializing now to the electrostatic potential of a rod near a wall (Equation S4) we get:
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w (h) =
UE (h)

L
= 64πB

√
κr

2π
e−κh

with the second derivative

w′′ (h) = 64πκ2B

√
κr

2π
e−κh

The harmonic stiffness constant a of the tilting variable is finally given as:

a =
w′′ (h)L3

12

a =
16πκ2BL3

3

√
κr

2π
e−κh

If we now insert Equation S5 for h depending on κ we get:

a =
κπr2g∆ρL3

12
(S12)

0.0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

a 
in

 1
05  k

T

k-1 in µm

DI water

Figure S4: Plot of a vs. the Debye length κ−1 according to Equation S12.
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S6 Simulation of orientation of rods in shear flow near

a wall

S6.1 Interaction with flow and wall

Figure S5: Coordinate system with definition of angles Θ (angle to y-axis) and Φ (angle of
projection of u on x-y plane). The flow goes in the x-direction, the gradient in the z-direction,

and the wall is in the x-y plane.

In a simple shear flow, next to the wall, we have a combination of two effects: The torque Mwall

caused by the electrostatic wall-rod interaction and the hydrodynamic torque, Mhydr, coming

from the shear flow itself.

S6.1.1 The wall torque

The wall-induced torque is a vector orthogonal to the rod director t and the plane unit normal

ẑ.

Mwall = Mwall t× ẑ

S13



Its magnitude can be derived from the tilting angle related potential, Eq. S11 from the previous

section

Mwall = − ∂

∂τ
W (h, τ)

≈ −a (h) τ

where τ ≪ 1 is assumed to be small and a (h) is the stiffness constant from Eq. S12. In terms

of the rod director components

t =


tx

ty

tz


the tilt angle τ can be also expressed as

τ ≈ tz =
√

1− t2x − t2y

S6.1.2 Hydrodynamic torque

Following Dhont and Briels, [6], the time evolution of the rod director t (t) in the simple shear

flow can be described in terms of its angular velocity vector ω (t)

dt

dt
= ω × t

Given the angular velocity, the hydrodynamic torque is then given by

Mhydr = −ξrot
[
ω − t̂×

(
Γ · t̂

)
+ ε2û×

(
ΓT · t̂

)]
where

S14



Γ = γ̇


0 0 1

0 0 0

0 0 0


is the velocity-gradient tensor for the simple shear flow, ΓT its transpose and with the two

constants ε and ξrot.

ε2 =
3

2

(
2r

L

)2

log

(
L

2r

)
(hydrodynamic aspect ratio)

ξrot =
kBT

Drot

(rotational friction coefficient)

S6.1.3 Equation of motion

Balancing the surface torque with the hydrodynamic torque Mwall = Mhydr gives the equations

of motion for ω and t

−aτ t̂× ẑ = −ξrot
[
ω − t̂×

(
Γ · t̂

)
+ ε2t̂×

(
ΓT · t̂

)]
dt

dt
= ω × t

Solving the first one for ω and inserting into the second one

dt

dt
=

(
t̂×
[(
Γ · t̂

)
− ε2

(
ΓT · t̂

)
+

a

ξrot
τ ẑ

])
× t

or split in components:

S15



d

dt


tx

ty

tz

 =


γ̇tz

0

a
ξrot

tz − ε2γ̇tx

− tz

(
γ̇tx
(
1− ε2

)
− a

ξrot
tz

)
tx

ty

tz


It seems that the equations for tx and tz decouple from ty:

ṫx =

(
γ̇ − γ̇t2x

(
1− ε2

)
+

a

ξrot
tztx

)
tz (S13)

ṫz = −ε2γ̇tx −
a

ξrot
tz − t2z

(
γ̇tx
(
1− ε2

)
− a

ξrot
tz

)
(S14)

S6.1.4 Steady state solutions and their stability

The full phase plane is displayed in Figure S6, with a trivial equilibrium point for tx = 0 and

tz = 0 corresponding to the preferred orientation observed in the experiment. Additionally,

there are two saddle points close to tx = ±1.

Figure S6: The (full non-linear system) (tx, tz) phase plane with ξrot = 1150 kBTs, γ̇ = 15 s-1,
ε = 0.273 and a = 100000 kBT.

[7]
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S6.1.5 Stability of the origin

In the following to proceed, we consider the tx/z system and drop the small O (t2z) terms:

ṫx = γ̇
(
1− t2x

(
1− ε2

))
tz (S15)

ṫz = −ε2γ̇tx −
a

ξrot
tz (S16)

Scaling all by γ̇

γ̇−1ṫx =
(
1− t2x

(
1− ε2

))
tz

γ̇−1ṫz = −ε2tx −
a

ξrotγ̇
tz

which we rewrite in the non-dimensional form

ṫx =
(
1− t2x

(
1− ε2

))
tz

ṫz = −ε2tx − αtz

[Time] = γ̇−1 (unit time)

α =
a

ξrotγ̇
, (scaled tilt-potential stiffness)

ε2 =
3

2

(
2r

L

)2

log

(
L

2r

)
(hydrodyn. aspect ratio)

Small uz ≪ 1 approximation: As mentioned before, the origin (tx, tz) = 0 is an equilibrium

point. To look at its stability, we need the corresponding eigenvalues of the linearized version

of the rhs:

ṫx ≈ tz (linearized)

ṫz ≈ −ε2tx − αtz

S17



d

dt

 tx

tz

 ≈

 0 1

−ε2 −α


︸ ︷︷ ︸

A

 tx

tz



with a matrix A representing the linear part of the dynamical system (around (0, 0)). Its

eigenvalues are

λ1/2 = −α

2
±
√(α

2

)2
− ε2

When α, ε > 0 they both have a negative real part which implies the stability of the origin.

There are however two cases that manifest differently in terms of the observable motion (e.g.

kayaking):

1. Case 1 (stiff tilt potential), α ≥ 2ε: Here we have two negative and real eigenvalues. The

origin is an attractive node. There is no observable kayaking i.e. no oscillation, just

relaxation.

2. Case 2 (soft potential) , α < 2ε: The root
√

becomes now imaginary and we have two

complex conjugate eigenvalues:

Re
(
λ1/2

)
= −α

2

Im
(
λ1/2

)
= ±

√
ε2 −

(α
2

)2
The latter means that we have a “relaxational kayaking” that eventually dies out.

The period of the kayaking is given as: To =
2π√

ε2−(α
2 )

2 .

The second case is particularly interesting if we have additional (thermal) excitations away

from the equilibrium point.

S6.2 Adding thermal noise to the system

To introduce Langevin thermal dynamics we add a Gaussian white noise term
√
2kBT/ξrot Nω

to the angular velocity equation and the system now reads

S18



ω = t̂×
[
ξrot
(
Γ · t̂

)
− ξrotε

2
(
ΓT · t̂

)
+

aτ

ξrot
ẑ

]
+
√
2kBT/ξrotNω

dt̂

dt
= ω × t̂

with the noise vector components Nω,i (i = 1, 2, 3)

⟨Nω,i (t1)Nω,j (t2)⟩ = δijδ (t1 − t2)

where the prefactor of the noise term,
√

2kBT/ξrot , is chosen to satisfy the fluctuation dissipa-

tion relation. Inserting one into the other we get:

dt̂

dt
= t̂×

[
ξrot
(
Γ · t̂

)
− ξrotε

2
(
ΓT · t̂

)
+

aτ

ξrot
ẑ

]
× t̂+

√
2kBT/ξrotNω × t

Note that now the noise term on the r.h.s. becomes multiplicative noise, i.e. its amplitude

depends on components of t itself

Nt =


Nx

Ny

Nz

 =Nω × t =


Nω,1

Nω,2

Nω,3

×


tx

ty

tz

 =


Nω,2tz −Nω,3ty

Nω,3tx −Nω,1tz

Nω,1ty −Nω,2tx


With this multiplicative noise term, the two dynamic equations for tx and tz read

ṫx =

(
γ̇ − γ̇t2x

(
1− ε2

)
+

a

ξrot
tztx

)
tz +Nx

ṫz = −ε2γ̇tx −
a

ξrot
tz − t2z

(
γ̇tx
(
1− ε2

)
− a

ξrot
tz

)
+Nz

Note that the equation for the y component ty =
√

1− (t2x + t2z) is entirely slaved by the two

others and the normalization condition for the unit director t.
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S6.3 Scaled form of equations for simulation

We implement a Python simulation based on the Langevin system above. For that we scale all

by γ̇

d

dt̂
tx =

(
1− t2x

(
1− ε2

)
+ αtztx

)
tz +

Nx

γ̇︸︷︷︸
nx

d

dt̂
tz = −ε2tx − αtz − t2z

(
tx
(
1− ε2

)
− αtz

)
+

Nz

γ̇︸︷︷︸
nz

Nx = σ (Nω,2tz −Nω,3ty)

Ny = σ (Nω,3tx −Nω,1tz)

Nz = σ (Nω,1ty −Nω,2tx)

⟨Nω,i (t1)Nω,j (t2)⟩ = δijδ
(
t̂1 − t̂2

)
σ2 =

2kBT

ξrotγ̇

t̂ = t/ts = tγ̇

where the dimensionless time t̂ is now measured in units of inverse shear rate ts = 1/γ̇, and the

stiffness a is given by the dimensionless parameter α = a
ξrotγ̇

. We can experimentally determine

ξrot using the data used to measure the height from the rotational diffusion coefficient. For

a rod length L = 18 µm in DI water, we get ξrot = 1150 kBTs which is used in the Python

simulation.
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