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1 Inertial contribution to mechanical impedance

1.1 Geometry and equations

The distance between the sphere and the plane is approximated by a parabolic shape

h(r ) = h0 + 1

2R
r 2 (S1)

with R the radius of the sphere.
In the gap, the fluid obeys the Stokes equation of motion, including the inertial term:

ρ
∂vr

∂t
=−∂p

∂r
+η∂

2vr

∂z2 (S2)

as well as the continuity equation
∂vz

∂z
+ 1

r

∂

∂r
(r vr ) = 0 (S3)

In the lubrication approximation, the pressure field does not depend on z. The variation of the velocity field along
z is stronger than along r . One can therefore separate the two different dimensions, r and z. One first solve for the
flow along z, and then calculate the pressure along r .

1.2 Flow

The flow is sinusoidal and depends only on z: vr (z, t ) = vr (z)e jωt , it thus verifies

η
∂2vr (z)

∂z2 − jωρvr (z) = ∂p(r )

∂r
(S4)

where the pressure field is p(r, t ) = p(r )e jωt .
One introduces the (complex) length scale δ, as

δ2 = ν

jω
(S5)

with ν= η
ρ the kinematic viscosity.

The general solution is accordingly

vr (z) =− ∇p

jωρ
+ A cosh

( z

δ

)
+B sinh

( z

δ

)
(S6)

with ∇p = ∂p
∂r .

The flow is symetry versus z, so that B = 0, and one assumes no-slip boundary condition at z = ±h
2 . The solution is

accordingly
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)
 (S7)
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Note that for ω−→ 0, one indeed recovers the parabolic Poiseuille flow as expected.
The velocity averaged over the vertical gap, v r = 1

h

∫ h/2
−h/2 d zvr (z), is accordingly

v =− ∇p

jωρ
× 1

h

∫ h/2
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d z
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 (S8)

so that

v r =− ∇p

jωρ
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tanh
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h
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)
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 (S9)

1.3 Pressure field

One starts with the continuity equation, S3, which one integrates over z. This yields

U −0+ 1

r

∂

∂r
(r h(r )v r ) = 0 (S10)

where U (t ) =U e jωt is the imposed vertical velocity of the bead.
One deduces the pressure equation as
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A first integration leads to

r
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The constant vanishes (cf r = 0), yielding
∂p

∂r
= jρωU r

2

h(r )−2δ tanh
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h(r )
2δ

] (S13)

Now,h(r ) = h0 + r 2

2R , so that dh = r dr
R . One can therefore integrate formally the previous equation as

p(r )−0 = jρωU R

2

∫ "∞"

h
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h
2δ

] (S14)

Note that we imposed that the oscillating value of the pressure at infinity is vanishing. One concludes that

p[h] = jρωU R

2
F

[
h

2δ

]
(S15)

where

F (x) =
∫ ∞

x

d t

t − tanh t
(S16)

When ω−→ 0, δ−→∞, then the denominator in the previous integral is h −2δ tanh
[

h
2δ

]
≃ h3

12δ2 , so that one recovers

the usual result p(r ) ∼ h−2. However, the integral in S16 does not converge in general, and one should impose an
upper bound cutoff, so that one rather writes

p[h] = jρωU R

2

∫ Dc
2δ

h
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d t

t − tanh t
(S17)

The value of the cutoff Dc is to be discussed, see section 1.7.2 below. We argue that it should be Dc ∼ δ.
One may introduce

F1(x) =
∫ 1

x

d t

t − tanh t
(S18)

so that
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2

(
F1

[
h

2δ

]
−F1

[
Dc

2δ

])
(S19)

2



1.4 Normal force

The normal (oscillating) force is

Fz =−
∫ ∞

0

(
−p(r )+2η

∂vz

∂z

)
2πr dr (S20)

The second term is negligible, so that

Fz =−
∫ ∞

0
−p(r )2πr dr (S21)

The change of variables Rdh = r dr allows us to rewrite the integral as

Fz = 2πR
∫ Dc

h0

p[h]dh (S22)

Using the previous result for p[h], one gets

Fz =π jρωU R2
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Since δ2 = ν
jω , δ is a complex distance, and this shows that Fz has both an imaginary part (the expected case where

the force is in phase with the velocity) and a real part .

1.5 Limiting case of high frequency

This corresponds to 2 | δ |< h0, i.e. ω > ν0

h2
0

. Note that there are already some frequency (inertial) effects occuring for

ω> ν0
R2 , due to the previous cutoff issues.

But let’s focus here in the above limiting case. In this case, one may approximate tanh t ≃ 1, and

p[h] = jρωU R
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Note that we approximated Dc −2δ≃ Dc since in this limit 2δ< h0 ≪ Dc.

Fz =π jρωU R2
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Then
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We are not interested in this limit.

1.6 Small frequency limit: Reynolds regime

We consider the very small frequency limit, ω−→ 0. In this case h/2δ−→ 0.
We approximate (t − tanh t )−1 ≃ 3

t 3 and insert it in ??, one gets

F (x) ≃
∫ ∞

x
d t

3

t 3 = 3

2x2 (S27)

Hence, one deduces the Reynolds contribution to the pressure

pR [h] = 3ηU R

h2 (S28)

so that,

Fz = 2πR
∫ ∞

h0

p[h]dh (S29)

and ones recovers the Reynolds formula

FR = 6π
ηU R2

h
(S30)
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1.7 Intermediate frequency regime

1.7.1 Response modulus

We now consider next terms in terms of inertia for the pressure. We write accordingly

1

t − tanh t
≃ 3

t 3 + 6

5t
+O(t ) (S31)

One gets

F (x) ≃
∫ "∞"

x
d t

3

t 3 + 6

5t
= 3

2x2 + 6

5
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x

]
(S32)

where we introduce a cutoff xc in the diverging term, to be discussed below.
Hence,

p[h] = pR (h)+ 3 jρωU R

5
log

[
Dc

h

]
(S33)

The force is again defined as

Fz = 2πR
∫ ∞

h0

p[h]dh (S34)

and one gets

Fz [h] = FR [h]+ 6π jρωU R2

5

(
Dc −h +h log

[
Dc

h

])
(S35)

ther real part of this function is the usual Reynolds expression. However, the second term of the force is imaginary and
corresponds to the real part of the impedance.
In practice, defining Z ′ =−F /a, with a the displacement, and noting that U = jωa, then one obtains

Z ′[h] = 6πρω2R2

5

(
Dc −h +h log

[
Dc

h

])
(S36)

Note however that this expression is only valid for h < Dc, and one expects a vanishing Z ′[h] for h > Dc.

1.7.2 Cut-off: physical interpretation

The value of the cutoff plays an important role in this problem. When the oscillating bead is far from the wall, i.e.
h ≫ δ, one can imagine that the sphere is surrounded by a fluid sheared layer of thickness δ(ω). Beyond this sheared
layer, the flow is vanishing. Hence the sphere ’does not see’ the wall and one indeed expects a vanishing Z ′[h]. It is
only when the sheared layer ’touches’ the wall that the force will be non-vanishing.
Hence this suggests that the cutoff distance should be identified with a length of order δ (and not R as initially
thought). Let us write that Dc =α

p
ν/ω with α= O(1) a numerical factor.

One accordingly predicts the real (elastic) contribution to the mechanical response as

Z ′[h] = 6πρω2R2

5

(
Dc −h +h log

[
Dc

h

])
(S37)

with Dc =α
p
ν/ω.

1.7.3 Theoretical response considering elasto-hydrodynamic contribution

In this section, we discuss the competition between two effects that govern the elastic response Z ′: the inertial com-
ponent and the elasto-hydrodynamic (EHD) response arising from the sample’s elasticity. To model the combined
effect of these processes, we assume they behave like two parallel springs and sum their respective stiffnesses. The
results are depicted in Figures S1,S2 and S3 for 1000 mPa.s, 100 mPa.s and 1 mPa.s silicone oils respectively.
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Figure S1: Theoretical normalized Z’ (normalized) responses obtained considering both inertial and elasto-
hydrodynamic effects for a 1000 mPa.s silicone oil on different substrates.

Figure S2: Theoretical normalized Z’ responses obtained considering both inertial and elasto-hydrodynamic effects
for a 100 mPa.s silicone oil on different substrates.
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Figure S3: Theoretical normalized Z’ (normalized) responses obtained considering both inertial and elasto-
hydrodynamic effects for a 1 mPa.s silicone oil on different substrates.

2 Additional Figures

2.1 Tip characterization

Figure S4: SEM characterization of a typical probe we use in our lab, at three different magnification. These probes
are made by fusing a glass rod with an acetylene torch, the surface tension giving them the spherical shape. One can
see that at the micro scale, the surface is perfectly flat and particle free.
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2.2 Zero determination

Figure S5: Determination of the solid contact’s position.

For each acquisition, the frequency shift, voltage excitation, amplitude, and phase are recorded simultaneously. With
the Phase-Locked-Loop active, the phase is typically centered at 0°. A drop-out in the phase indicates a sharp elastic
response, which is characteristic of solid contact, allowing us to establish the zero position along the z-axis (dashed
line in Figure S5). This method was already introduced in Ref. [1].
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2.3 Sphere-plane confinement
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Figure S6: Reynolds scaling of the imaginary part of the impedance Z ′′

Figure S7: Log-Log plot of the elastic impedance of PDMS on SiC

The dSFA used in this study has a very large millimetric probe and confinement is measured from the far-field down
to nanometric length, deep in the lubrication approximation h ≪ R and δ≪ R. In consequence, whereas the far-field
calculation (h ≫ R) of Ref.[2] yields a qualitative agreement with experiments from Refs.[3, 4], it is not appropriate for
our results in the high confinement regime which are indeed in disagreement with the h−3 scaling but rather with a
log (see Figure S7).
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2.4 Influence of substrate’s stiffness

2.4.1 Raw data

Figure S8: Frequency Shift (Hz) versus distance curves for silicon oils on SiC

Figure S9: Frequency Shift (Hz) versus distance curves for silicon oils on Mica
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Figure S10: Frequency Shift (Hz) versus distance curves for silicon oils on HOPG

2.4.2 Intermediate case

In Figures S1,S2 and S3 we plot the theoretical real mechanical impedance Z’ vs distance d for a viscous fluid with
viscosity of 1000, 100 and 1 mPa.s (respectively) calculated for all the substrate used during our study.

It can be observed that the inertial effect precedes the elasto-hydrodynamic response by two orders of magnitude
for all tested viscosities when using SiC, mica, and HOPG substrates. This explains why we consistently observed a
negative frequency shift with all tested liquids under our experimental conditions.
In contrast, for PDMS, the elasto-hydrodynamic length scale, DE HD , is on the same order of magnitude as the inertial
length, δ, i.e., DE HD ∼ δ. In fact, DE HD is theoretically larger than δ for fluids with viscosities of 100 and 1000 mPa·s,
which explains the absence of negative frequency shifts when using PDMS and the corresponding silicone oils.

In the case of less viscous fluids (e.g., 1 mPa·s), the characteristic lengths DE HD and δ are so close that we may observe
a competition between the two effects. To verify this hypothesis, we conducted an additional experiment using PDMS
as the substrate, with a glass sphere and dioctyl phthalate (viscosity 40 mPa·s) (see Figures S11 and S12).

Figure S11: Experimental Frequency shift response obtained with dioctyl phtalate (viscosity ∼ 40 mPa.s) confined
between the millimetric glasse probe and a PDMS substrate (Young modulus ∼ 800 kPa).
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Figure S12: Theoretical Z’ responses obtained considering both inertial and elastohydrodynamic effects for a 1 mPa.s
silicone oil on different substrates.

In this experiment, we observe the competition between inertial effects and elasto-hydrodynamic responses. At
larger distances from the contact point, the inertial effects dominate, leading to a decrease in the frequency shift (and
so Z ′). However, as the system approaches a critical transition distance (approximately d =100 µm here), the elasto-
hydrodynamic response becomes more prominent, causing the frequency shift to increase as the probe approaches
the substrate.

2.5 Influence of substrate’s rugosity

Until now, we were conducting measurements with smooth surfaces (Mica, SiC and HOPG that have roughness below
1 nm according to literature). Experimentally, we observed that when both the probe and the surface were not per-
fectly cleaned, dust and visible particles remaining in the contact area systematically prevented us from witnessing
the negative frequency shift decay upon approach. We believe that the rugosity induced by the dust particles is of the
same order of magnitude than the boundary layer thickness, leading to the detection of the hard contact before the
inertial effect.

Figure S13: Roughness dependency experiment. Microscope image of the silver pillars array printed with Hum-
mink’s patented method (left picture). The pillars have a 4:3 ratio: 30 µm diameter and 40 µm height. Right pictures
schematize the approach of the glass sphere compressing the pillars.

In order to verify this theory, we design a sample of controlled roughness by printing micro-pillars with Hummink’s
Nazca printer [5, 6] on a SiO2 glass slide. These pillars are made of silver nanoparticles thermally sintered, disposed in
a 20x20 grid and have a 4:3 size ratio. A drop of AP 1000 Silicon oil (1000 mPa.s) was deposited on the pillar array and
the approach was conducted with all other parameters kept similar to previous experiments.
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Figure S14: Roughness dependency results obtained with the 1000 mPa.s silicon oil on the silver pillars array. On
panel a we observe a slow decrease in frequency shift until the hard contact is reached between the glass sphere
and the metallic pillars, leading to a typical hertzian contact behaviour. On panel b the negative frequency shift is
recovered after the compression/detruction of the pillars in the contact zone. Enventually on panel c we observe
the negative frequency shift obtained for the same oil on the same glass slide without any pillar. Despite the common
tendency, the experiment on the clean area of the slide leads to a negative frequency shift decrease at a greater distance
away from the solid contact than the destroyed pillars configuration. NB: Insets are schematic and not at scale.

We observe in Figure S14 that the confined fluid’s response at long distance from the contact (tens of microns)
shows the same decrease in frequency shift than those observed with Mica and SiC at similar distances, which was
expected as the glass’ Young modulus is around 70 GPa. This proves that the porous layer formed by the pillars does
not affect much the flow of the inertial boundary layer around the sphere. Nevertheless, as soon as the contact be-
tween the pillars tip and the glass sphere is made, the frequency shift rises and we obtain a classical Hertzian contact
response, with a linear increase of frequency shift with the distance. The pillars mechanical stiffness induces a hard
contact 40 µm away from the glass slide’s surface that screens the inertial effect on the frequency shift signal and
prevents its complete observation.

To double-check the limited impact of the pillar array on the flow of the inertial boundary layer, we crush the
pillars in the contact area between the sphere and the glass slide, then we perform again an approach at the same
location. We see on Figure S14b that we recover the negative frequency shift behavior, however in a lesser extent than
on a clean glass slide like Figure S14c: the frequency shift decrease is visible at much longer distances with the clean
sample.

We plot in Figure S15 the imaginary part of the mechanical impedance Z " versus the real part Z ′ (which is equiv-
alent to plotting dissipation versus conservative forces). In this plot the dissipation increases as the confinement dis-
tance decreases. We see that for all three configurations (clean surface, surface with pillars array, surface with crushed
pillars), the long distance (small Z " values) behavior is the same: a slight frequency shift decrease corresponding to
a slight Z ′ decrease. Then for the pillars array, the hard contact between the pillars and the sphere leads to a positive
frequency shift, while the clean surface and the crushed pillars keep on decreasing, although at a different pace. The
slope difference between the two suggests that it would be possible to tune the critical distance dc by changing the
surface geometry around the contact area (in particular the pillars’ height).
We conclude from these results that while the porous layer formed by the pillars minimally impacts the flow within
the inertial boundary layer, it disrupts the liquid’s confinement and prevents from sensing the negative Z ′. In other
words, pillars larger than the penetration length δ prevent the emergence of the inertial effect, whereas pillars smaller
than δ reduce the effective inertial effect distance dc.
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Figure S15: Influence of the substrate’s roughness on the mechanical response. All the eight approach and retract
experiments conducted on the pillars led to the same characteristic signature, with a slight decrease of the frequency
shift at long distances followed by sharp increase upon contact. Both experiments on the clean area and on the
crushed pillars give similar behaviors but with different slopes, showing the slight impact of the porous layer on the
inertial flow. The zoom-in inset enlightens the similar signature for all systems at long distances.
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