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1. Materials preparation and dynamic mechanical analysis

1.1 Materials preparation

The soft structure was fabricated through the solution polymerization technique, with the 

required chemicals detailed in Table 1. The base material, consisting of shape-memory 

polymers (SMPs), was formulated by blending aliphatic polyurethane diacrylate, 2-

phenoxyethyl acrylate, isobornyl acrylate, and azobisisobutyronitrile. NdFeB power, used as a 

filler, was mixed with a specific amount of pyrogenic silica during the solution blending to 

enhance its suspension. This addition aimed to improve the homogeneity of the mixture 

between the base material and the filler, ensuring a uniform distribution throughout the 

structure.

Supplementary Table 1 Materials required for the experiment.

Name Mass (g)

Aliphatic polyurethane diacrylate 

(Resinous)
5.0

2-Phenoxyethyl acrylate (Liquid) 15.0

Isobornyl acrylate (Liquid) 30.0

Azobisisobutyronitrile (Powdered) 0.2

Fumed silica (0.2μm, Powdered) 1.0

NdFeB powder (5μm, Powdered) 67.8

Supplementary Fig. 1 Preparation process for online reprogramming electronic bits.
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The procedure of preparing the SMPs solution is outlined in Fig. 1, as detailed below:

Fundamental materials were listed in Table 1 according to experimental protocols. Care should 

be taken when adding pyrogenic silica to prevent it from dispersing into the air. NdFeB powder 

is flammable and flames or static electricity should be avoided during handling. Given that 

NdFeB powder is prone to oxidation, any remaining powder should be sealed and stored 

immediately after weighing.

Begin by uniformly mixing the chemicals listed in Table 1 through stirring. Utilize a shear 

mixer to ensure thorough dispersion of the pyrogenic silica, thereby enhancing the suspension 

of the NdFeB powder in the solution. The stirring speed should be set to 1400 to 1800 rpm, 

with the process continuing for 40 to 50 minutes to prepare the SMPs solution. Next, debubble 

the solution by placing it in a vacuum oven. Afterward, install the heating wire at the center of 

the mold, and sequentially introduce the solution into the mold in four stages using a dropper.

Place the mold in an oven for heat curing. Turn on the heating switch, and when the oven 

temperature reaches 80 degrees Celsius, maintain this temperature for 4 hours. Then, increase 

the temperature to 120 degrees Celsius and hold it for half an hour.

1.2 Dynamic mechanical analysis (DMA)

Supplementary Fig. 2: DMA data.

The prepared material specimens was measured Young's modulus, glass transition 

temperature and the damping coefficient tanδ by DMA. The DMA instrument used was the 
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DMA8000 model from PE made in USA, with sample dimensions of 20mm×20mm×2mm. 

The heating rate was set at 3°C/min, covering a temperature range from 20°C to 120°C at a 

frequency of 1Hz. Experimental data were showed in Fig. 2 and indicateed a sharp decrease 

in Young's modulus as the temperature increases to 50.8°C, with values approaching a 

constant level below 40°C and above 70°C. This step-like state is apt for describing distinctly 

different states, akin to the binary state transitions presented in Fig. 2b of the manuscript.

2. Theoretical analysis

Theoretical analysis is conducted based on the deformation of a typical two-element 

deformable structure. The force behavior of the flexible structure under a uniform magnetic 

field is illustrated in Supplementary Fig. 3. In the figure, B represents the magnetic field 

strength, M is the bending moment,  denotes the magnetic field angle,  indicates the beam 𝜑 𝜃𝑎

end rotation angle, l represents the length of the bits, and E, A, and I are sectional parameters 

of the bits.

Supplementary Fig. 3 Forces acting on a soft structure in a uniform magnetic field.

The right bit can be considered a rigid body, subject only to rigid displacement and rotation 

due to the deformation of the left bit. In a uniform magnetic field, the deformation of the left 

bit is determined by combining the deformation caused by its own uniformly distributed 

bending moment with that resulting from the concentrated bending moment applied by the right 

bit. The deformation of the left bit, resulting from a uniformly distributed bending moment, is 

governed by the following equilibrium equation.

Based on Wang' s work1, the rotation angle  of the left end can be calculated as follows:𝜃𝐿
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The concentrated bending moment generated in the right section of the beam can be 

determined from the angle at the left end. The concentrated bending moment applied to the right 

section of the beam is calculated using the theory of small deformations1 and then superimposed 

onto the left section to ascertain the beam’s total deformation. The forces acting on any section 

of the curved beam are depicted in Supplementary Fig. 4.

Supplementary Fig. 4 Forces acting on section of a bent bit.

The differential equation describing its deflection curve is given by:
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where u and v represent the tangential and normal displacements of the cross-section’s centroid 

along the curved beam axis s, R is the radius of curvature at the cross-section, and N and M are 

the axial force and bending moment at the cross-section, respectively. JZ is the moment 

generated by considering varying fiber lengths across different locations of the curved beam’s 

cross-section, with its calculation formula presented as follows:

𝐽𝑧 = ∫
𝐴

𝑦2𝑑𝐴

(1 ‒
𝑦
𝑅

)
 . (S6)

Supplementary Fig. 5 Distribution of forces in a curved beam.

For a curved beam with a rectangular cross-section: 

 .
𝐽𝑧 = 𝑅3𝑏ln

2𝑅 + ℎ
2𝑅 ‒ ℎ

‒ 𝑅2𝑏ℎ (S7)

Considering that the concentrated bending moment M varies with the rotation angle at the 

left end of the beam, the overall deformation of the curved beam is solved through an iterative 

process, described as follows: 



7

(1) Assume the magnetic induction intensity at the i-th iteration step is Bi and the rotation 

angle of the left beam end is θai, where θa1=θL. Consequently, the bending moment Mai at the 

beam end for the current iteration is defined by

 .𝑀𝑎𝑖 = 𝐴𝐿2|𝑀||𝐵𝑖|sin (𝜑 ‒ 𝜃𝑎𝑖) (S8)

(2) In the scenario presently examined, the integration of Equation (S8) into Equation (S5) 

yields the following derived outcome:
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The radius of curvature for the curved beam as defined in Equation (S9) is defined by 

.
𝑅2 = (𝑑𝜃

𝑑𝑠) ‒ 2 (S10)

Equation (S9) is a system of second-order linear ordinary differential equations with non-

constant coefficients. Since R varies as a function of s, an explicit solution to this system is 

not feasible. As a result, numerical methods are employed for its resolution. The geometric 

configuration of the curved beam on the left side is described below1: 

{𝑑𝜃
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=
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� (S11)

Integrating Equation (S9) and (S11) allows for the calculation of the values for x, y, θ, u and 

v. According to the principle of superposition in solid mechanics2, the deflection curve of the 

curved beam is determined as follows:

{ 𝑥' = 𝑥 + cos (𝜃)𝑢 + sin (𝜃)𝑣
𝑦' = 𝑦 ‒ cos (𝜃)𝑣 + sin (𝜃)𝑢  .� (S12)

At this stage, the angle at the end of the beam is defined as:



8

 .
𝜃𝑎𝑖 + 1 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑑𝑦'

𝑑𝑥'
|𝑠 = 𝐿1)               

(S13)

(1) The iteration continues until Bi=B, at which junction the coordinates at the beam’s end, 

denoted as (xa, ya), correspond to the rotation angle, noted as θa.

By incorporating Equation (S8), we conclude that the beam on the right side is rigid, with 

the position of its free end determined by:

{ 𝑥𝑏 = 𝑥𝑎 + 𝐿2cos (𝜃𝑎) = 𝑥𝑎 + 𝑀𝑎𝑖cos (𝜃𝑎)/𝐴|𝑀||𝐵𝑖|sin (𝜑 ‒ 𝜃𝑎𝑖)
𝑦𝑏 = 𝑦𝑎 + 𝐿2sin (𝜃𝑎) = 𝑦𝑎 + 𝑀𝑎𝑖sin (𝜃𝑎)/𝐴|𝑀||𝐵𝑖|sin (𝜑 ‒ 𝜃𝑎𝑖)  . � (S24)

As mentioned earlier, the deformation capability of the soft structure is determined by several 

factors including the strength and direction of the magnetic field, the unit bending resistance 

cross-section factor, the number of units, and the magnetic strength of each unit.

3. Numerical simulation

The simulation process is detailed as follows:

(1) The air domain simulates the external environment surrounding the soft structure, 

while a fixed clamp represents the clamping state. Fixed constraints are applied to the upper 

and lower plates and the end of the soft structure, with the remainder left free.

(2) The simulation model is solved using the ‘magnetic field’, ‘no current’ and ‘solid 

mechanics’ physical fields. For the magnetic field analysis, a one-dimensional uniform 

magnetic field of 280mT is introduced into the air domain in the direction indicated in 

Supplementary Fig. 5. In simulating mechanical deformation, the effect of temperature on the 

material’s Young's modulus is simplified through interpolating of the temperature-dependence 

curve measured by the Dynamic Mechanical Analysis (DMA) experiments.

(3) To simulate the bending deformation driven by magnetic field forces on the magnetic 

particles, the mechanics and magnetic fields are coupled in COMSOL to compute the magnetic 

field force applied to the soft structure. Subsequently, a boundary load module is introduced 

within the solid mechanics field to apply the calculated magnetic field force.

(4) Mesh size is tailored to the computational demands of different regions. The area 

within reach of bending is refined to improve the accuracy of the results, whereas regions distant 
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from the soft structure employ a coarser mesh to reduce computational time. Given that the 

model involves large deformation finite element simulation, a dynamic mesh is implemented. 

This mesh adapts during bending, being redefined to yield more precise simulation outcomes.

4. Experiments

4.1. The experiment setup

Supplementary Fig. 6 Experimental setup: a) schematic diagram, b) magnetic field 

generator and data acquisition equipment.

The magnetic field generator, as depicted in supplementary Fig. 6, consists of an 

electromagnet, an electromagnet power supply, a Gauss meter, a test stand, and a sample 

clamping device. The electromagnet generates a one-dimensional uniform magnetic field， 

with its intensity regulated by modifying the input current. Furthermore, the direction of the 

magnetic field’s poles can be controlled by reversing the current’s direction. In this experiment, 
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the electromagnet can produce a maximum magnetic field of 3500 Gauss. The electromagnet 

power supply uses an F2030 high-precision digital power source to deliver a stable current to 

the electromagnet. The output range of the power supply spans from -10 to 10A, featuring high 

step resolution accuracy of ±0.2% for 1mA and 5mA outputs, and ±0.1% for 10 outputs. The 

Gauss meter, model CH-1300, offers a measurement range of ±3T, a resolution of 0.1mT, and 

an accuracy of ±0.50%. The measurement accuracy of these instruments is sufficient to meet 

the research requirements of this project.

4.2. Online reprogramming soft strip structure

The process of changing the magnetic field and controlling temperature to switch binary 

states via the bit’s stretchable heater circuit, resulting in sine and cosine curve deformations, is 

illustrated in Supplementary Fig. 7. The main steps are outlined as follows:

Supplementary Fig. 7 Online reprogramming of thermal controls and applied magnetic 

field to two bits during sinusoidal deformation of a soft structure.

(1) Turn on the heating switch zone 1 of the soft structure and heat it to above 90℃, which 

takes approximately one minute. Following this, apply and maintain a uniform magnetic field 

until the magnetic flux density increases to 3000 Gauss.
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(2) Turn off the heating switch for zone 1 of the soft structure. Zone 1 starts cooling for 

approximately one and a half minutes, and the soft structure in zone 1 begins to solidify, 

preserving the previous deformation owing to the external magnetic field.

(3) Turn on the heating switch in zone 2 and heat it to above 90℃. Subsequently, reverse 

the direction of the magnetic field by changing the polarity of the input current to the 

electromagnet. Zone 2 rapidly bends in the opposite direction, whereas zone 1 performs 

minimal deformation due to its cooled state and large Young's modulus.

(4) Turn off the heating switch for zone 2 of the soft structure. Zone 2 cools to room 

temperature, taking about one and a half minutes, while zone 1 solidifies, preserving its 

previous deformation state due to the external magnetic field. At this point, the bending 

deformation of the soft structure exhibits a sine-cosine profile.

(5) Turn off the magnetic field and turn on the heating switches of both zones 1 and 2 until 

the soft structure reverts to its initial deformation state.

4.3. Online reprogramming hand-shaped soft structure

Soft structures, equipped with multiple independent bits, have the capacity to perform 

complex deformations. We have designed a hand-shaped structure, as depicted in 

supplementary Fig. 8a, where the palm, manufactured through 3D printing, supports five strip 

structures symbolizing the fingers.

Through the design of an experimental scheme, the hand-shaped structure successfully 

executed the "OK" gesture. This experimental setup is showed in supplementary Fig. 8, with 

the main steps detailed as follows:

 (1) Turn on the heating switch for zone 1 in the thumb area and heat it to above 90℃. 

Following this, a 3000 Gauss uniform magnetic field is applied, causing rapid deformation of 

the thumb area due to magnetic field.

 (2) Turn off the heating switch for zone 1 of the thumb, the thumb begins to solidify, 

preserving its previous deformation due to the external magnetic field’s influence.

(3) Turn on the heating switch for zone 1 of the index finger and increase its temperature 

to above 90℃. Change the direction of the magnetic field to 38。 relative to the palm’s normal. 

This causes the index finger to bend due to the magnetic force, resulting in the hand-shaped 

structure forming an "OK" gesture, as shown in Supplementary Fig. 8c.
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Supplementary Fig. 8 Reprogramming hand-shaped structure: a) demonstration of 

"OK" 

4.4. Error analysis

The experimental deformation results in Figure 4 were compared with the simulation 

results, using the maximum displacement at the end of the flexible strip to calculate the error. 

The comparison between the experiment and the error is shown in Supplementary Fig. 9, and 

the related errors were provided in Supplementary Table 2, where it could be observed that the 

maximum displacement error at the end was less than 15%. The numbers of the flexible strips 

in the figure correspond to those in the table.
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Supplementary Fig. 9 Comparison between simulation and experimental results

Supplementary Table 2 The relative error between experiment and simulation

No.
Simulation 

Displacement(mm)

Experimental 

Displacement(mm)

Related error@ 

(%)

a-1 26.23 27.86 5.85

a-2 51.47 48.88 5.30

a-3 54.71 52.48 4.25

a-4 7.67 8.60 10.81

a-5 22.25 24.17 7.94

① 28.43 26.25 8.30
b-1

① 4.78 5.10 6.27
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① 51.65 49.40 4.55
b-2

① 24.12 25.30 4.66

① 3.01 3.16 4.75

① 7.53 7.07 6.51c-1

① 21.55 19.92 8.18

① 8.35 7.28 14.70

① 22.23 24.04 7.53c-2

① 53.56 56.08 4.49

@Relative error = (Simulation-Experiment)/ Experiment×100%

Experiment errors: Experimental errors are often caused by deviations in magnetic field 

application angle, where the actual magnetic field direction may differ from the theoretical 

setup, affecting the sample’s response. Additionally, variations in equipment performance, such 

as magnetic field strength and uniformity, can further impact the accuracy of experimental data.

Simulation errors: Simulation errors typically arise from model simplifications, 

including insufficient mesh resolution and neglecting complex physical phenomena. Numerical 

approximations, such as instability and rounding errors during computations, also contribute to 

deviations from real-world results.

/

(a) 
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(b)

Supplementary Video 1 a) variation in deformation of soft structures with the number of 

bits, b) influence of bit size on soft structure deformation.

Video 1a reveals that with an increasing number n of bits, by adjusting the magnetic field B 

applied to the i-th bit, as indicated in the video’s upper right corner, the soft structure obtains 

progressively complex deformations. The fractal dimension results, displayed in the lower right 

corner, change with the bit count, further evidencing the soft structure’s capability for complex 

deformation morphologies. Likewise, by increasing the number of bits and continuously 

reducing the length of each newly added bit, the soft structure demonstrates an expanding range 

of programmable deformation morphologies in Video 1b.
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