Supporting Information:

Adhesion of the mucilage envelope of *Ocimum basilicum* seeds probed by sum frequency generation spectroscopy

Mette H. Rasmussen¹, Mikkel Bregnhøj¹, Agnieszka Kreitschitz^{2, 3}

Stanislav N. Gorb³ and Tobias Weidner^{1,*}

¹ Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark

² Department of Plant Developmental Biology, University of Wrocław, ul. Kanonia 6/8, 50-328, Wrocław, Poland

³ Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118 Kiel, Germany

*Corresponding author email address: weidner@chem.au.dk

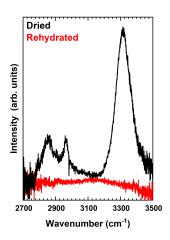


Figure S1: SFG spectra for the mucilage envelope from the Ocimum Basilicum (OC) adhering to the CaF2 interface in the dried state (Black) and in the rehydrated state (Red).

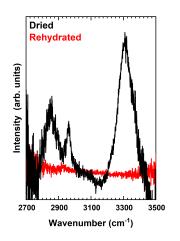


Figure S2: SFG spectra for the mucilage envelope from the Ocimum Basilicum (OC) adhering to the PS interface in the dried state (Black) and in the rehydrated state (Red).

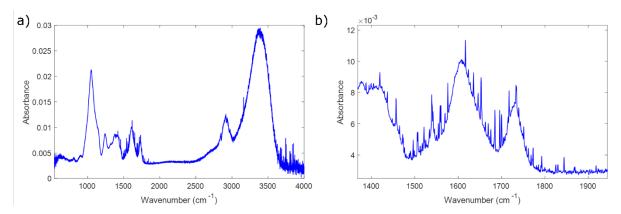


Figure S3: ATR-FTIR spectra of hydrated Ocimum Basilicum seeds. The sample was measured by dropcasting 50 μ L of Milli-Q water onto 10 seeds on the ATR crystal of the spectrometer and letting it dry for 3 hours. The sharp bands are from residual water which has not been completely purged. (a) Overview spectrum. (b) Detailed spectrum of the C=O region.

Table 1:

The Fresnel factors are calculated based on the data in the table. The calculated local field corrections are $F_{SSP,PS} = 0.7557$ and the $F_{SSP,CaF2} = 0.6066$. The Fresnel factors are calculated assuming the beams are transmitted through the PS or the CaF₂. The local field correction is calculated assuming an interfacial refractive index as an average between the cellulose and the PS or CaF₂ interface. The incoming angle for the visible beam is 30° and the angle for the incoming IR beam is 40°. The correction does not significantly change the results and does therefore not affect the main conclusion in the paper. The refractive indices are found in the following references for cellulose¹, PS² and CaF₂³.

	ω _{sf}	ω _{VIS}	ω _{IR}
λ (nm)	648	804	3333
ω (cm ⁻¹)	15438	12438	3000
n _{PS}	1.5864	1.5766	1.5617
N _{CaF2}	1.4326	1.4305	1.4155
n _{Cellulose}	1.4613 (approximated)	1.4641	1.4378
n'average PS-cellulose	1.5262	1.5204	1.5115
n'average CaF2-cellulose	1.4493	1.4473	1.4384

Bibliography

1 N. Sultanova, S. Kasarova and I. Nikolov, Acta Phys. Pol. A, 2009, 116, 585–587.

- 2 X. Zhang, J. Qiu, J. Zhao, X. Li and L. Liu, *Journal of Quantitative Spectroscopy and Radiative Transfer*, 2020, 252, 107063.
- 3 H. H. Li, Journal of Physical and Chemical Reference Data, 1980, 9, 161–290.