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In this supplementary material, we provide the simulation details of Vertex models, a brief overview of MCT,
the details of the numerical solution, a description of the non-ergodicity transition, wavevector-dependence of
the MCT solution, the random first-order transition theory fits of the simulation data, and additional details of
the experimental system and their analyses.

SI. VERTEX MODEL OF CONFLUENT TISSUES

The computational models of confluent cell monolayers have an energy function, Eq. (1) in the main text, and they represent
cells as polygons [S1–S10]. These models can be both lattice-based or continuum. In this work, we have used a continuum
model known as the Vertex model. In this model, the degrees of freedom are the vertices. The vertices in a cell are connected
with a straight line to obtain the cell volume and the perimeter.

Figure S1(a) shows a typical configuration from our simulation. Unlike particulate systems, packing fraction in the confluent
models remains one at all times and cannot be a control parameter. One particular process, known as the T1 transition, is
crucial for the dynamics in these systems. A T1 transition involves the disappearance of an edge between two neighboring cells
followed by the subsequent formation of a perpendicular edge between them (Fig. S1b).
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FIG. S1. (a) A snapshot of the Vertex model from our simulation. The polygons represent different cells; colors are for visual presentation. (b)
Schematic representation of the T1 transition or the neighbor exchange process.

The Vertex model is one of the most widely used systems to study the glassy dynamics in confluent systems. In its usual
implementation, three edges meet at each vertex (Fig. S1a). This property remains conserved throughout the dynamics. However,
when p0 > pmin, vertices with more number of edges seem to become favorable [S8, S11, S12]. The consequence of this change
in property is not yet entirely clear. Therefore, we restricted p0 < pmin in our simulations.

SII. SIMULATION DETAILS

We have used Brownian dynamics [S13] in our simulations:

γṙi = Fi +
√
2DT ζ, (S1)

where DT is the translational diffusivity at temperature T , γ is the substrate friction, and ζ is a random noise with zero mean
and unit variance. The force, Fi, is obtained via the energy function, H, given in the main text [S13].
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We have used a square box of dimension L = 30 for our simulations. We first generate a randomized point pattern comprising
N non-overlapping points via the random sequential addition algorithm. We use these points as the initial set of seed points for
Voronoi tessellation incorporating periodic boundary conditions. We then equilibrate the configuration for the specific values
of parameters and use it as the initial configuration for subsequent simulations. During the simulation, we monitored the edge
lengths. If an edge becomes smaller than a specified length, l0, we implemented a T1 transition. We ensured that the new edge
length after the T1 transition was greater than l0.

Calculating the cell center: As described in the main text, we represent the cells by their centers (of mass). We compute
the cell center from the vertex positions. Assuming the vertices come in either clockwise or counterclockwise order, we can
calculate the position of the center as

rcm
i,x =

1

6A

n−1∑
i=0

(xi + xi+1) (xiyi+1 − xi+1yi)

rcm
i,y =

1

6A

n−1∑
i=0

(yi + yi+1) (xiyi+1 − xi+1yi) ,

(S2)

where n is the total number of vertices of a given cell, and the area A is obtained as

A =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi) . (S3)

As the cell perimeter is a closed loop object, we must have x0 = xn and y0 = yn.

SIII. MODE COUPLING THEORY (MCT)

SIIIA. Basic form of the theory

The mode Coupling theory (MCT) was first derived for the glassy dynamics of particulate systems [S14–S16]. It is a first-
principle analytical theory for an immensely complex system. Here, we briefly highlight the main features of the theory. Consider
the Hamiltonian H for a particulate system,

H =
∑
i

p2i
2m

+
1

2

∑
i,j ̸=i

ϕ(rij), (S4)

where pi is the momentum of the ith particle (not to confuse with the perimeter of cell), m, the mass, rij , the inter-particle
distance between the ith and the jth particles, ϕ is the interaction potential. We can then write down the equation of motion for
any variable A(t) as

dA(t)

dt
= {A(t), H} = iLA(t) (S5)

where L is Liouville operator [S16]. The number density in real space is

ρ(r, t) =

N∑
j

δ(r − rj(t)) (S6)

and in Fourier space, ρ(k, t) is

ρ(k, t) =

N∑
j

exp(ikrj(t)) (S7)

where N is the total number of particles and rj(t) is the position of particle j at time t. The intermediate scattering function
F (k, t) is

F (k, t) =
1

N
⟨ρ(−k, 0)ρ(k, t)⟩ (S8)
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where the bracket denotes the ensemble average. The static structure factor S(k) is

S(k) =
1

N
⟨ρ(−k, 0)ρ(k, 0)⟩. (S9)

Using Eq. (S5) with A(t) = (ρ(k, t), j(k, t)), we can use the Mori-Zwanzig projection formalism to write down the equation
of motion for F (k, t) as

∂

∂t
F (k, t) +

D0k
2

S(k)
F (k, t) +

∫ t

0

dt′M(k, t− t′)
∂

∂t
F (k, t′) = 0, (S10)

where S(k) is static structure factor (center-of-mass) of cells in confluent epithelial monolayer, D0 is equal to kBT/m and
M(k, t) is the Memory kernel can be written as

M(k, t) =
ρD0

2

∫
dq

(2π)2
V 2
k (q,k− q)F (|k − q|, t)F (q, t), (S11)

where ρ is number density and Vk is the vertex function can be written as

V (q,k− q) = k̂.qc(q) + k̂.(k− q)c(|k− q|) (S12)

where c(q) is the direct correlation function. Equation (S10) is a non-linear integro-differential equation that we can self-
consistently solve with a static structure factor as an input. Note the generic features of the mode-coupling theory:

• Equation (S10) is quite generic: it is applicable for any dimension and any system in the absence of external fields.

• The potential ϕ can have an arbitrary form. Therefore, the theory is also applicable to the confluent system. ϕ in Eq. (S4)
corresponds to H in the main text.

• The information of the system enters via ϕ alone; this is encoded through S(k) in Eq. (S10). Solution of the MCT equation
requires S(k) as the input, it acts as the initial condition, F (k, t = 0) = S(k).

SIIIB. MCT in two-dimension

We are interested in spatial dimension two (2d) for the confluent epithelial monolayers. Equation S10 can be written in 2d as,

τk
∂

∂t
f(k, t) + f(k, t) +

∫ t

0

dt′m(k, t− t′)
∂

∂t
f(k, t′) = 0, (S13)

where τk = S(k)/D0k
2, f(k, t) = F (k, t)/S(k), and

m(k, t) =
1

2ρk2

∫
dq

(2π)2
V 2
k (q,k− q)S(k)S(|q− k|)S(q)f(|q− k|, t)f(q, t). (S14)

For the convenience of discretization, we rewrite the kernel in symmetrized form as

m(k, t) =
1

2ρk2

∫
dq

(2π)2
V 2(k/2 + q, k/2− q)S(k)S(|k/2 + q|)S(|k/2− q|)f(|k/2− q|, t)f(|k/2− q|, t). (S15)

We now use the change of variables as

x = |k/2 + q| =
√
(qx + k/2)2 + q2y =

√
q2 + kq cos θ +

k2

4

y = |k/2− q| =
√

(qx − k/2)2 + q2y =

√
q2 − kq cos θ +

k2

4
, (S16)

where θ is the angle between k and q. As a result, the memory kernel becomes

m(k, t) =
ρ

8π2k4

∫ km

0

dx

∫ |x+k|

|k−x|
dyxyS(k)S(x)S(y)

[(k2 + x2 − y2)c(x) + (k2 − x2 + y2)c(y)]2

(((4x2k2)− ((k2 + x2 − y2)2)
1
2 )

f(x, t)f(y, t) (S17)
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where km is the numerical cut off wave vector and c and S are related by the Ornstein-Zernike [S17] equation,

c(k) =
1

ρ

(
1− 1

S(k)

)
. (S18)

Details of the parameters for the numerical solution: For the numerical solution, we follow the algorithm developed by Fuchs
et al. [S18]. F (k, t) decays very fast at short times and quite slow at long times. Therefore, to numerically resolve both regimes,
we must use an adaptive step size to discretize t. Thus, we start with a small time step h = 10−8 and double the step size every
Nt = 128 time step. We have discretized k via an equally spaced grid of Nk = 200 points with a grid spacing ∆k = 0.2. So
our wave vector grid become (ik ×∆k) where ik runs from 1 to Nk. We write the memory kernel, Eq. (S17), using the discrete
Riemann sums, ∫ km

0

dx

∫ x+k

|k−x|
dy.... →

Nk∑
ix=1

(∆k)

|k+x|∑
y=|k−x|

(∆k). (S19)

There is a divergence in the two extreme limits; we computed the sum by avoiding these points with respect to our k-
discretization.

SIIIC. The non-ergodicity transition of MCT

As we have discussed in the main text, MCT works surprisingly well in a specific regime of parameter space. At high T ,
F (k, t) quickly decays to zero. As we decrease T , the time evolution of F (k, t) becomes slower. It first decays to a plateau
and then towards zero at long times. As we further decrease T , F (k, t) never becomes zero and remains stuck at a finite value
forever; this is the non-ergodicity transition of MCT. The reason behind this transition remains unclear. It is generally believed
that MCT is a mean-field theory; the sharp MCT transition becomes a crossover for finite-dimensional systems. However, the
glassy properties are still governed by this genuine phase transition.

This transition should persist in confluent systems too. As Fig. S2 shows, the decay of F (kmax, t) becomes slower as T
becomes lower and eventually, at a low enough T which is TMCT, F (kmax, t) does not decay to zero.
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FIG. S2. The non-ergodicity transition of MCT. As T decreases, the decay of F (kmax, t) becomes slower. When T = TMCT, the correlation
function remains fixed at a finite value.
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SIIID. k-dependence of F (k, t)

We have discussed in the main text that the precise nature of the decay of F (k, t) depends on the specific value of k. We have
chosen six different values of k and show the decay of F (k, t) for these values of k.
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FIG. S3. Wavevector-dependence of F (k, t). (a) We use the S(k) for T = 0.0069 and p0 = 3.52 as input to MCT to obtain F (k, t). (b) The
decay of F (k, t) corresponding to the values of k is shown by the symbols in (a). The precise nature of F (k, t) depends on the specific values
of k.

SIIIE. k and a-dependence of the value of τ in MCT and simulation
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FIG. S4. We have tuned k and a in such a way that the τ for the same parameters becomes the same. We have used p0 = 3.70, k = 7.2, and
a = 0.23.

The precise values of τ in MCT and simulation depend on k and a, respectively. However, their trends are independent of
these parameters. Moreover, we can tune them k and a to have the same numerical values of τ . The specific choices of k and
a are motivated by practical considerations for better analysis. We demonstrate in Fig. S4 that for suitable choices of k and a,
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we can have similar values of τ within MCT and simulation. However, these parameters are not computationally convenient;
therefore, we chose a different set of values, as stated in the main text.

SIIIF. RFOT theory fits for the sub- and super-Arrhenius relaxations
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FIG. S5. Application of the RFOT theory to the simulation data. (a) Fit of the RFOT theory form, Eq. (S20), with the simulation data gives
a reasonable description of the data. (b) TK in the sub-Arrhenius regime becomes negative, showing that the theory is not applicable in this
regime.

Compared to the MCT, RFOT theory describes the relaxation dynamics as an activation process over a barrier. The relaxation
time is obtained [S19–S21] as

τ = τ0 exp

[
E

T − TK

]
, (S20)

where TK is the Kauzmann temperature, E is a constant, and τ0 is the high-T value of τ . RFOT theory crucially relies on the
existence of a finite-temperature thermodynamic transition at TK . As shown in Ref. [S22], we can phenomenologically extend
the theory for confined systems.

Instead, we can consider an equilibrium scenario where confluency modifies the various constants. Then, we can fit Eq. (S20)
with the simulation data treating the constants τ0, E, and TK as fitting parameters. We show the fit in Fig. S5(a) and the values
of TK in Fig. S5(b). Consistent with Ref. [S22], we find TK is negative in the sub-Arrhenius regime and positive in the super-
Arrhenius regime, although the fits with the simulation data remain reasonable. The negative TK implies that the RFOT theory
is not applicable in the sub-Arrhenius regime.

SIV. EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

We conducted the cell culture experiment using Madin-Darby Canine Kidney (MDCK) epithelial cells in culture inserts with
three wells (Ibidi chamber). We cultured the MDCK cells in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
5% fetal bovine serum (FBS) and 1% antibiotic (penicillin and streptomycin). The incubation conditions are 370C and 5%
CO2. We seeded the cells at different concentrations to achieve variable cell number densities. After the monolayer becomes
confluent, we start the imaging process. Before imaging, we replaced the existing cell culture media with fresh media.

SIVA. Imaging

We started imaging using a Leica DMi8 inverted microscope with a 20x objective lens. Images were captured in phase
contrast mode at intervals of 2.5 minutes throughout a 4-hour duration. We show a fast-forwarded 4-hour-long imaging video
in 6 seconds in Supplementary Movie (SI movie) I. Throughout the microscopy session, we maintained a stable environmental
condition of 370C with 5% CO2, achieved by an incubation system mounted over the microscope.
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FIG. S6. We fit the experimental data of relaxation time as a function of T (obtained via the Cell Shape Theory, see main text for details) with
a power law with exponent 3/2 that MCT predicts. The data seems to be consistent with this prediction of the theory.

SIVB. Image Analysis and Cell Tracking

After we have the microscopy images, we analyse them to obtain quantitative data. We conducted image analysis using the
freely available Cellpose software [S23] and an in-house custom-made code that we developed in MATLAB and Python. We
primarily performed cellular segmentation using the Cellpose software and trained our custom segmentation model based on
Cellpose 2.0 [S24]. The performance of our trained model is robust; we show in Supplementary Movie II the track of the
segmented images corresponding to the movie in SI Movie I. We tracked the cells using the TrackMate [S25] plugin in Fiji
[S26].

(b)
(a)

FIG. S7. We fit the simulation data of the relaxation time at low p0, where the system shows super-Arrhenius behavior, namely at p0 = 2.60
and p0 = 2.90, as a function of T , with a power law with an exponent of 1.

SIVC. Power-law behavior of the relaxation time in experiment

Since we could only get three data points for varying density, it is hard to reliably estimate the power law exponent from fit.
However, we confirmed that the exponent 3/2, as we obtained from MCT, is consistent with the experimental data (Fig. S6).
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SIVD. Power-law behavior of the relaxation time in Simuation at low p0

At lower p0 values, where the system exhibits super-Arrhenius behavior, although the relaxation dynamics still follow a
power-law (Fig.S7), the exponent of the power law depends on p0 (see main text for details).

SIVE. Cell-shape Distribution (CSD) Function at Constant λP /T

At a constant p0 = 3.6, the cell-shape distribution (CSD) function falls onto a single curve for varying λp and T such that the
ratio of λP /T = 2.78 remains constant (Fig.S8). We obtain α = 6.09 by fitting the data with CSD function. This shows that a
change in λP can be represented via a corresponding change in T .
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FIG. S8. Cell-shape distribution (CSD) function at p0 = 3.60 and constant λP /T = 2.78 for various λP and T . We obtain the values of
α = 6.09 by fitting the data with the CSD function.

SIVF. Fit of τMCT vs τexp data with a homogeneous form
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FIG. S9. A homogeneous form for τMCT = Cτexp with C = 0.72 also fits well with the data. The line is within the error bars of the data.
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