Supplementary Information

Controlled synthesis of ternary acrylamide/sodium acrylate/polyethyleneglycol hybrids by integrating different clays and fillers: A comprehensive evaluation of structural features

Rabia BOZBAY^{a,b}, Mertcan ER^{a,b}, Kübra KARA ERSOY^b and Nermin ORAKDOGEN^{a,*}

^aIstanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, 34469, Maslak, Istanbul, Turkey, Tel: +90-212-285-3305.

^bGraduate School of Science Engineering and Technology, Department of Chemistry, Istanbul Technical University, 34469, Istanbul, Turkey *Corresponding author; e-mail: <u>orakdogen@itu.edu.tr</u>

Structural characterization of hybrid PAN/PEG-NC gels-doped with different fillers

Table S1. Chemical composition and basic properties of clay minerals used in this work.

Clay	Chemical Formula	CEC (mmol/ 100 g)	Surface Area (m²/g)	Layer Structure	Average particle size	Family of Clay
Kaolin	Al ₂ Si ₂ O ₅ (OH) ₄ .nH ₂ O	3-15	10-20 [14]	1:1	Hexagonal crystals ranging in size from 0.1 to 30 μm. These crystals form in stacked layers	Kaolinite- serpentine
Bentonite	(Na) _{0.7} (Al _{3.3} Mg _{0.7}) Si ₈ O ₂₀ (OH) ₄ .nH ₂ O	For Ca- bentonite; 50 and for Na- bentonite; 80-85	60-120 for Ca- bentonite and 20-30 for Na- bentonite [15]	2:1	2.5 to 45 μm with a silky-smooth powder	Dioctahedral Smectite
Mica	KAl ₂ [AlSi ₃ O ₁₀] (OH) ₂	10-70	100 [16]	2:1	Diameters of crystalline grains are less than 10 µm with an average value of 5.4 µm. Average thickness of grains is 0.8 µm with ratio of diameter to thickness of 6.9	2:1 phyllosilicates

Table S2. Cons	tituents of blank PAN/PEG and ternary hy	brid PAN/PEG-NC gels.
	Nanofiller content of hybrid gels C = % (w/v) in reaction solution	1.50 w/v%
	. .	

C = % (w/v) in reaction solution	1.50 w/v%	
AAm content	94 mol%	
Ionic comonomer NaA content	6 mol%	
PEG-2000 content of ternary hybrid gels	5.14 w/v%	
Crosslinker ratio X (mole ratio of BAAm to	1/90	
monomers AAm + NaA)	1/02	
APS conc	2.63 mM	
TEMED conc.	24.9 mM (0.375 v/v%)	
Polymerization solvent	Water	
Type of papaparticles	Bentonite, kaolin,	
Type of hanoparticles	mica, silica, graphene	

Table S3. Data showing % mass loss of clays and nanofillers at temperatures 120 °C and 800 °C.

Sample	Weight loss % at 120 °C	Weight loss % at 800 °C
Kaolin	99.4	88.3
Bentonite	86.3	80.5
Silica	93.3	90.1
Mica	99.9	99.1
Graphene	91.4	79.3

Table S4. Thermodegradation data of blank PAN/PEG and filler-doped hybrid PAN/PEG-NC gels. Tmax is the temperature of maximum degradation rate in each stage, ML is the mass loss percentage during the degradation stage and Mr is the residue weight at 650 °C.

Sample code	Tmax₁ (°C)	ML ₁ (%)	Tmax ₂ (°C)	ML ₂ (%)	Tmax₃ (°C)	ML ₃ (%)	Mr (%)
Blank PAN/PEG	195.5	88.2	249.9	80.5	347.4	58.3	19.5
PAN/PEG-NC/Kln	193.9	89.9	260.9	81.8	347.5	66.3	32.6
PAN/PEG-NC/Bnt	191.2	88.8	253.7	81.5	347.9	59.5	21.4
PAN/PEG-NC/Slc	189.3	88.9	253.0	79.4	347.5	58.1	18.8
PAN/PEG-NC/Mica	192.2	91.2	252.1	83.5	349.1	60.9	27.9
PAN/PEG-NC/Grn	-	-	250.0	85.6	345.4	72.3	42.4

Elasticity of hybrid PAN/PEG-NC gels-doped with different fillers

Fig. S1. Stress-strain isotherms of hybrid PAN/PEG-NC Hgs (A, B) and Cgs (C) as-prepared state and at thermodynamic equilibrium swollen state. (D) Optical images of Slc-integrated PAN/PEG-NC/Slc hydrogels during uniaxial compression.

(A) PAN/PEG-NC/SIc Hydrogel Finger compression Recovery Initial **Recovery State Compressed State** PAN/PEG-NC/Bnt Hydrogel (B) **Recovery State Initial State Compressed State** Recovery Initial Compressed (C) PAN/PEG-NC/Grn Hydrogel **Compressed State Recovery State** Recovery **Finger compression**

Figure S2. Behavior of Slc-integrated PAN/PEG-NC/Slc (A), BNT-integrated PAN/PEG-NC/Bnt (B) and Grn-integrated PAN/PEG-NC/Grn (C) sample during the uniaxial compression and finger testing; before and after removal of stress.

Figure S3. Optical appearances of manuel compression with a plate (A) and finger compression (B) of KLN-integrated hybrid PAN/PEG-NC/Kln hydrogels.

Swelling of hybrid PAN/PEG-NC gels-doped with different fillers

Figure S4. The equilibrium volume swelling ratio φ_V of hybrid PAN/PEG-NC cryogels as a function of swelling pH(A), and swelling temperature (B).

Figure S5. The equilibrium volume swelling ratio φ_V of hybrid PAN/PEG-NC cryogels as a function of the ionic strength of salt solution of NaCl (A) and CaCl₂ (B), respectively.

Figure S6. The equilibrium volume swelling ratio of hybrid hydrogels as a function of swelling temperature (A), and optical images for temperature-dependent swelling hybrid gels containing Kln, Mica and Slc (B).

Fig. S7. (A, B) Reversible pulsatile swelling (pH 11.2) and deswelling (pH 2.1) of hybrid PAN/PEG-NC gels shown as the variation of relative gel mass φ_{rel} with the time of swelling or shrinking, (C) $\ln \varphi(t) / \varphi_W$ against lnt plot, and (D) Schott kinetic model for average swelling rate $t / \varphi(t)$ obtained from the swelling in pH 11.2 solution.

Table S5	. Non-linearized	forms of the	e swelling	kinetics	equation	applied i	n the	swelling	kinetics of	of
ternary hy	brid gels.									

	Type of Kinetic Model	Kinetic Equation	Description of coefficients
Eq. (S1)	Peppas power law equation model	$\frac{\varphi(t)}{\varphi_{\rm W}} = kt^{n},$ $\varphi(t) / \varphi_{\rm W} \le 0.60$	k is the swelling kinetic constant and n is the transport exponent.
Eq. (S2)	Schott's pseudo second order kinetics	$\frac{d\varphi(t)}{dt} = k_s \left[\varphi_W - \varphi(t)\right]^2$ $\frac{t}{\varphi(t)} = \frac{1}{k_s \varphi_W^2} + \frac{t}{\varphi_W}$	$d\varphi(t)/dt$ is the time- dependent swelling velocity, and k_s is the second order swelling rate constant.

Table S6. Dynamic swelling characteristics; the kinetic exponent n, diffusion constant k, and swelling rate constant k_s for hybrid PAN/PEG-NC gels from the swelling in pH 11.2 solution.

	Fickian diffus	ion model	Schott's second- order kinetic model		
Sample	п	k	R ²	<i>k</i> _s ×10 ⁻¹	R ²
PAN/PEG	0.1026	0.4047	0.9610	0.1768	0.9761
PAN/PEG-NC/KIn	0.1310	0.3479	0.9831	0.2039	0.9985
PAN/PEG-NC/Bnt	0.1153	0.4355	0.9934	0.1711	0.9802
PAN/PEG-NC/Mica	0.1508	0.3085	0.9880	0.1976	0.9970
PAN/PEG-NC/Slc	0.1388	0.3341	0.9996	0.1890	0.9950
PAN/PEG-NC/Grn	0.1427	0.3106	0.9825	0.2113	0.9991

	Adsorption Kinetic Model	Linearized Equation	Non-linearized Equation	Kinetic parameters
Eq.(S3)	Pseudo- First-order	$\ln(q_e - q_t) = \ln q_e - k_1 t$	$q_t = q_e(1 - e^{-k_1 t})$	k_1 is pseudo- first-order rate constant (min- ¹)
Eq.(S4)	Pseudo- Second- order	$\frac{t}{q_t} = \frac{t}{q_e} + \frac{1}{k_2 q_e^2}$	$q_t = \frac{k_2 q_e^2 t}{1 + k_2 q_e t}$	k_2 is pseudo- second-order rate constant (g mg ⁻¹ min ⁻¹)
Eq.(S5)	Elovich	$q_t = \frac{1}{\beta} \ln t + \frac{1}{\beta} \ln(\alpha\beta)$	$q_t = \frac{1}{\beta} \ln(\alpha \beta t)$	α is a constant for rate of chemisorption, β is a constant for extent of surface coverage of adsorbent
Eq.(S6)	Avrami	$\ln\left[\ln\left(\frac{q_e}{q_e-q_t}\right)\right] = n_{Av} \ln k_{Av} + n_{Av}$	$q_{t} = q_{e} \left[1 - e^{\left[-(k_{Av} t)^{n_{Av}} \right]} \right]$	k _{Aν} is Avrami kinetic constant, and n _{Aν} is Avrami exponent
Eq.(S7)	Intraparticle diffusion model	$q_t = k_{diff} t^{1/2} + C$	$q_t = k_{diff} t^{1/2}$	k_{diff} is rate constant for intraparticle diffusion (mg g ⁻¹ min ^{-1/2}), and <i>C</i> is a constant for thickness of boundary

Table S7. The equations used for pseudo-first-order, pseudo-second-order, Elovich, Avrami kinetic, and intra-particle model for total MB adsorption onto various nanofiller-doped hybrid gels.

Table S8. Thermodynamic parameters and energetic changes associated with adsorption of MB dye and adsorption capacity of nanofiller-doped hybrid PAN/PEC-NC/Clay gels.

layer.

Sample	Exp. $q_e^{}$ (mg/g)	Non-linear PFO $q_e ~({ m mg/g})$	Non-linear PSO q_e (mg/g)	ΔG^{o} (kJ/mol K)
Blank PAN/PEG	6.0538	5.9381	6.3386	-4.4862
PAN/PEG-NC/Kln	5.4050	5.1216	5.6564	-2.9467
PAN/PEG-NC/Bnt	4.0615	3.9277	4.0853	-0.7652
PAN/PEG-NC/Slc	6.1125	5.9518	6.3543	-4.6233
PAN/PEG-NC/Mica	4.7692	4.6268	5.1356	-1.8343
PAN/PEG-NC/Grn	6.9923	6.4833	7.1694	-12.165

Pseudo-seco	Intra-particle model					
Sample	$k_2 imes 10^{-1}$ (g / mg min ⁻¹)	R ²	k _{initial} (mg g ^{.1} min ^{.1/2})	R ²	$k_{later} \times 10^{-1}$ (mg g ⁻¹ min ^{-1/2})	R ²
Blank PAN/PEG	0.21518	0.9993	0.6095	0.9936	0.1038	0.7021
PAN/PEG-NC/Kin	0.1109	0.9997	0.5621	0.9881	0.6271	0.9078
PAN/PEG-NC/Bnt	1.7821	0.9999	0.5506	0.9619	0.0888	0.7531
PAN/PEG-NC/Slc	0.2821	0.9995	0.6849	0.9866	0.1763	0.5714
PAN/PEG-NC/Mica	0.1219	0.9993	0.5582	0.9992	0.5985	0.7614
PAN/PEG-NC/Grn	0.0829	0.9994	0.7562	0.9691	1.0956	0.7529

Table S9. The comparison of linearized PSO and intraparticle diffusion kinetic models' rate constants calculated from the experimental data.

Tabl

e S10. Non-linearized forms of the isotherm models applied in the adsorption of MB dye.

	Types of Isotherm Model	Non- linear Equatio n	Isotherm parameters	Description of Isotherm
Eq.(S8)	Langmuir	$q_e = \frac{q_{\max}K_LC_e}{1+K_LC_e}$	q_{\max} (mg g ⁻¹) is maximum adsorption capacity of adsorbent, K_L (L/mg) is Langmuir adsorption constant, R_L is separation factor	R_L value shows that adsorption process is irreversible for $R_L = 0$, is favorable for $0 < R_L < 1$, linear for $R_L = 1$ or unfavorable for $R_L > 1$
Eq.(S9)	Freundlich	$q_e = K_F C_e^{1/n_F}$	K_F (mg/g)(mg/L)^-1/n is Freundlich isotherm constant and $\rm n_F$ is adsorption intensity	n_F is heterogeneity factor and $1/n_F < 1$ confirms a cooperative adsorption.
Eq.(S10)	Redlich- Peterson (R-P) isotherm	$q_e = \frac{K_{RP}C_e}{(1 + \alpha_{RP}C_e^{\beta_{RP}})}$	$\mathcal{K}_{RP}(L/g)$ is Redlich–Peterson isotherm constant, α_{RP} (mg/L) is Redlich–Peterson model constant and β_{RP} are Redlich-Peterson model exponent	β_{RP} is Redlich– Peterson model exponent, should be $0 \le \beta \le 1$.
Eq.(S11)	Sips isotherm	$q_{e} = \frac{q_{\max}K_{S}C_{e}^{n_{S}}}{(1+K_{S}C_{e}^{n_{S}})}$	K_S is Sips equilibrium constant (L mg ⁻¹), n_S is Sips model exponent.	If value of n_s is equal to 1 then this equation will become a Langmuir equation. As C_e or K_s approaches 0, this isotherm reduces to Freundlich isotherm.
Eq.(S12)	Dubinin- Radushkevich (D-R)	$q_{\rm max} = q_e e^{-K_{DR}\varepsilon^2}$	${\mathcal E}$ (J/mol) is potential of Polanyi, E is the mean adsorption energy and ${\mathcal B}$ is D-R isotherm constant	D–R model provides information on the sorption process, whether it be

Figure S8. Regression analysis of adsorption of MB with PAN/PEG and hybrid PAN/PEC-NC gels containing Kln, Bnt, Mica, Grn, and Slc by pseudo-second order (PSO) kinetic model (A), and intra-particle diffusion model (B) and optical views of Kln and Bnt-integrated PAN/PEG-NC gels during adsorption (C).

Table S11. Comparison of the results obtained from this study with other adsorbents used in	n MB
adsorption.	

Adsorbents	Dye Name	Kinetic Model	lsotherm Model	Adsorbent Dose	Dye Concentration	q _{max} (mg/g)	Ref.
Kaolin-integrated sodium alginate graft poly(acrylic acid-co-acrylamide)	Rhodamine B	Pseudo second- order	Freundlich and Redlich- Peterson equations	0.05-0.5 g	1000mg/L, pH=7, contact time 24 h, temperature 20 °C	245 mg/g	[8]
Carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide	Methylene blue	Pseudo second- order	Langmuir	(0.01, 0.025, 0.05, 0.075, and 0.1 g)	50 mL solution (100 mg/mL) constant stirring at 100 rpm	48–94% and capacity 58–110 mg/g	[9]
Polyvinyl alcohol/carboxymet hyl cellulose hydrogels reinforced with graphene oxide and bentonite	Methylene blue	Pseudo second- order	Langmuir	30 mg	20 mL of aqueous solution of 200 mg/L at room temperature	172.14 mg/g	[10]
Carrageenan-g- polyacrylamide/ben tonite superabsorbent composites	Methylene blue	Not- specifie d	Langmuir	20 mg	50 mL of 20-90 mg / L	43.6- 123.75 mg g−1	[69]
Glucose and glucosamine grafted polyacrylamide/gra phite composites	Methylene blue	Pseudo second- order	Langmuir	0.02 g to 0.120 g	50 mL of 10 to 100 mg/L	61% to 90.33%	[80]
PAN/PEG-NC gels doped with BNT, Kln, Mica, Slc, and Grn	Methylene blue	Pseudo second- order	Sips and Langmuir	0.01 g	20 mL of 20 to 100 mg/L	57.6%, 67.7%, 76.6%, 88.6% 99.2% (84.8 - 95.1 mg/ g)	This work