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SI. HYDRODYNAMIC RADIUS AS A FUNCTION OF TEMPERATURE
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Figure S1: Hydrodynamic radius RH obtained from DLS measurements at different temperatures for microgels
in H2O (triangles) and D2O (squares).

Fig. S1 shows the hydrodynamic radius of the particles RH measured by DLS, as a function of temperature.
The line is a fit to a sigmoidal function, used to determine the VPT temperature. There are no significant
differences in the size of the particles in H2O (used for SAXS and rheology) and D2O (used for SANS).

SII. RADIUS OF GYRATION AS A FUNCTION OF DPEG CONCENTRATION

Fig. S2 reports the values of Rg obtained from the fits of the SANS scattered intensities of Fig.1 of the main
article, as a function of the dPEG solution in the mixture, used to control the osmotic pressure.

SIII. EXTENDED RG/R
0
G AND ϕ VS ϕEFF PLOTS

Fig.S3 reports the dependence of Rg/R
0
g and ϕ on ϕeff , where it can be clearly seen that most of the variations

are observed for ϕeff < 0.61.
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Figure S2: Radius of gyration Rg as a function of dPEG concentration.

Figure S3: Rg/R
0
g and ϕ as a function of ϕeff , including data of previous work.1

SIV. SAXS FITS FOR ϕEFF > 1 WITH A HYDROGEL NETWORK MODEL

Fig. S4 shows the scattering intensities measured for samples with effective packing fractions ϕeff = 1.20, 1.30,
1.40 and 1.50 at T = 20 ◦C, and fit curves obtained according to the following model,2 typically used to describe
scattering data from macroscopic hydrogels:

I(Q) = IOZ(Q) + IDB(Q) + bkg (S1)



Figure S4: SAXS scattering intensities I(Q) for ϕeff = 1.20, 1.30, 1.41 and 1.49, as indicated, and fits (lines)
obtained using Eqs. S1 to S3.

with3 :

IOZ(Q) =
IOZ(0)

1 + (ζQ)m
(S2)

in which the quantity IOZ(0) represents the scattering intensity at Q = 0, which is determined by the contrast
between the polymer and the solvent, and by the volume fraction of the polymer within the gel. The parameter
m is the Porod exponent, reflecting the interactions between the polymer and the solvent. For linear polymer
chains in a good solvent, m = 1.67, while m progressively increases with the worsening of the solvent conditions
and the associated polymer collapse.4 The Debye-Bueche function5 has the following expression:

IDB(Q) =
IDB(0)

(1 + a2Q2)2
(S3)

in which IDB(0) is the excess scattering at q = 0, which is again related to the contrast and the volume fraction
of the heterogeneities. Note that the latter term is the same used in the main article to model the contribution
of heterogeneities.
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