Electronic Supporting Information: Dynamics of nanoparticle tracers in supercooled nanoparticle matrices

Peter Edimeh, Ali H. Slim, and Jacinta C. Conrad*

Determination of the matrix volume fraction ϕ

The volume fraction ϕ of polystyrene (PS) particles within a suspension was determined by tracking the mass of the sample before and after samples were concentrated via centrifugation. First, the masses of the empty centrifuge membrane $M_{\rm m}$ and filter tube $M_{\rm ft}$ were determined. Using a pipette, 400 µL of the PS suspension with $\phi_{PS} = 10\%$ (mass M_t) was transferred into the centrifuge apparatus and the total mass of the centrifuge assembly (membrane, filter, and suspension) M_{asm} was measured. The initial mass of the PS suspension M_s was calculated by subtracting the mass of the assembled empty components from the mass of the assembly containing the suspension $M_{\rm s} = M_{\rm asm} - (M_{\rm m} + M_{\rm ft})$. We estimated that the mass of PS particles $M_{\rm PS} = 0.1 M_{\rm s}$ (based on the weight fraction) and then calculated the volume of PS particles V_{PS}/ρ_{PS} , where $\rho_{PS} = 1.055 \times 10^{12}$ g μ m⁻³. Similarly, the mass of water $M_w = M_s - M_{PS}$ and the volume of water $V_w = M_w/\rho_w$, where $\rho_w = 0.997 \times 10^{12}$ g μ m⁻³. The total suspension volume was $V_t = V_{PS} + V_w$, leading to the initial volume fraction $\phi_i = V_{\rm PS}/V_t$.

Suspensions were centrifuged at 8000 rpm for a given duration depending on desired ϕ . We measured the mass of the membrane + residue, M_{m+r} and the mass of the filter tube containing the filtrate $M_{\text{ft+f}}$ and subsequently determined the residue mass $M_{\text{r}} = M_{\text{m+r}} - M_{\text{m}}$ and filtrate mass $M_f = M_{ft+f} - M_{ft}$. The residue contained PS particles along with a small amount of water of mass $M_{r,w} = M_r - M_{\text{PS}}$. The volume of water in the residue was then $V_{r,w} = M_{r,w}/\rho_w$. We assumed that the the volume of PS in the residue did not change, i.e. $V_{r,PS} = M_{PS}/\rho_{PS}$. The total volume of the residue $V_r = V_{r,w} + V_{r,PS}$. Finally, we determined $\phi = V_{PS}/V_r$. This process was designed to achieve an absolute The error on the determination of ϕ within 3%, consistent with the typical The error in determining colloidal ϕ^1 ϕ^1 . We note, however, that ϕ is increased through the duration of centrifugation, and so the relative volume fractions are consistent.

Tracking resolution ϵ

δ	ϕ	G:W	Δx (μ m)	ϵ (μ m)	N (pixel \times pixel)	$N(\mu m \times \mu m)$
0.71	${}< 0.45$	5:6	0.228	0.155	256×256	58.4×58.4
0.71	> 0.45	5:6	0.152	0.105	256×256	38.9×38.9
0.45	> 0.45	6:5	0.114	0.059	256×256	29.2×29.2
0.36	${}< 0.46$	6:5	0.114	0.255	256×256	29.2×29.2
0.36	> 0.46	6:5	0.091	0.214	256×256	23.3×23.3
0.34	${}_{\leq 0.45}$	6:5	0.091	0.231	256×256	23.3×23.3
0.34	> 0.45	6:5	0.076	0.175	256×256	19.5×19.5

Table S1: Values of the tracking resolution ϵ for the given tracer-matrix size ratio (δ), glycerol: water mixing ratio (G:W), and volume fraction (ϕ) values; Δx is the pixel size used in each series of experiments and N is the 2D-image size in (pixel \times pixel) and (μ m $\times \mu$ m).

Supplementary tracking figures

Figure S1: Ensemble averaged mean-squared displacement (MSD) $\langle \Delta r^2 \rangle$ normalized by tracer diameter σ_s^2 as a function of lag time τ normalized by Brownian diffusion time τ_0 for various ϕ at size ratios δ of (a) 0.45 and (b) 0.36. Solid black lines indicate the scaling exponent α , where MSD $\propto \tau^{\alpha}$. The MSD is diffusive when $\alpha = 1$ and subdiffusive when $\alpha < 1$. The dashed lines represent the normalized tracking resolution ϵ . The The error bars indicate one standard deviation over at least four replicates per state point.

Figure S2: Normalized MSD $\langle r^2\rangle/\sigma_s^2$ as a function of normalized lag time τ/τ_0 , where τ_0 is the Brownian diffusion time for the large tracer, $\delta = 0.71$ at $\phi = 0.49$ and 0.50.

Figure S3: Non-Gaussian parameter α_2 as a function of normalized lag time τ/τ_0 , where τ_0 is the Brownian diffusion time for each tracer, at various ϕ for size ratio δ values of (a) 0.45 and (b) 0.36. The error bars indicate one standard deviation over at least four replicates per state point.

Differential dynamic microscopy

δ		Δx (μ m)	q_{\min} (μ m ⁻
0.71	${}< 0.45$	0.228	0.108
0.71	> 0.45	0.152	0.161
0.45	> 0.45	0.114	0.215
0.36	${}< 0.46$	0.114	0.215
0.36	> 0.46	0.091	0.270
0.34	${}< 0.45$	0.091	0.270
0.34	> 0.45	0.076	0.323

Table S2: Pixel size Δx and theoretical minimum q_{\min} for the various samples.

$\phi = 0.45$								$\phi = 0.46$			
$\delta = 0.45$ $\delta = 0.71$			$\delta = 0.34$ $\delta = 0.36$		$\delta = 0.36$		$\delta = 0.34$				
$q\sigma$ _s	\boldsymbol{s}	$q\sigma$ _s	\boldsymbol{s}	$q\sigma$ _s	\boldsymbol{s}	$q\sigma$ _s	\boldsymbol{s}	$q\sigma$ _s	\boldsymbol{s}	$q\sigma$ _s	\boldsymbol{s}
0.07	0.82	0.07	0.92	0.07	0.90	0.06	0.80	0.07	0.91	0.06	0.91
0.11	0.91	0.11	0.92	0.08	0.85	0.09	0.80	0.08	1.0	0.09	1.0
$0.15\,$	0.91	0.14	0.94	0.09	0.82	0.12	0.85	0.09	1.0	0.12	0.99
0.24	0.91	0.16	0.93	0.11	$0.82\,$	$0.14\,$	0.66	0.11	0.98	0.14	0.97
0.39	0.90	0.22	0.94	0.15	0.88	0.21	0.67	0.22	0.81	0.23	0.86
0.56	0.88	0.27	0.94	0.18	0.88	0.23	0.78	0.26	0.75	0.27	0.78
0.73	0.83	0.33	0.93	0.22	0.75						
0.90	0.78	0.38	0.93	0.26	0.89						
1.04	0.71	0.43	0.92								
1.24	0.59	0.50	0.88								
		$\phi = 0.47$					$\phi = 0.48$		$\phi = 0.49$		$\phi = 0.50$
$\delta = 0.71$			$\delta = 0.45$		$\delta = 0.34$		$\delta = 0.36$		$\delta = 0.34$		$\delta = 0.34$
$q\sigma$ _s	\boldsymbol{s}	$q\sigma_{\rm s}$	\boldsymbol{s}	$q\sigma$ _s	\boldsymbol{s}	$q\sigma$ _s	\boldsymbol{s}	$q\sigma$ _s	\boldsymbol{s}	$q\sigma$ _s	\boldsymbol{s}
0.07	0.80	0.07	0.81	0.06	0.83	0.07	0.74	0.06	0.66	0.06	0.63
0.10	0.71	0.11	0.78	0.09	0.70	0.08	0.72	0.09	0.61	0.10	0.52
0.16	0.63	0.16	0.74	0.12	0.70	0.10	0.62	0.14	0.63	0.16	0.40
0.23	0.62	0.22	0.74	0.14	0.63	0.15	0.51	0.20	0.64		
0.36	0.60	0.38	0.61	0.23	0.65	0.20	0.46	0.23	0.59		

Table S3: Stretching exponent s from fits of the ISFs to a stretched exponential function $f(q, \tau)$ = $\exp \{- (\Gamma(q)\tau)^s \}$ at specified normalized wavevectors $q\sigma_s$ for various samples.

Figure S4: DDM structure function $D(q, \Delta \tau)$ for (a) $(\delta, \phi) = (0.71, 0.45),$ (b) $(\delta, \phi) = (0.71, 0.49),$ (c) $(\delta, \phi) = (0.71, 0.49)$ ϕ) = (0.34, 0.45), and (d) (δ , ϕ) = (0.34, 0.49).

Figure S5: DDM structure function $D(q, \Delta \tau)$ for (a) $(\delta, \phi) = (0.45, 0.45),$ (b) $(\delta, \phi) = (0.45, 0.49),$ (c) $(\delta, \phi) = (0.45, 0.49)$ ϕ) = (0.36, 0.45), and (d) (δ , ϕ) = (0.36, 0.48).

Figure S6: DDM structure function $D(q, \Delta \tau)$ as a function of τ/τ_0 and ϕ at $q\sigma_s \sim 0.07$ for (a) $\delta = 0.71$, (b) $\delta = 0.45$, (c) $\delta = 0.36$, and (d) $\delta = 0.34$. The error bars correspond to standard deviation of the averaged measurements.

Figure S7: Collective intermediate scattering function $f(q, \tau)$ as a function of normalized lag τ/τ_0 for exhibits single exponential decay for $(\delta, \phi) = (a)$ $(0.45, 0.45)$, (b) $(0.45, 0.49)$, (c) $(0.36, 0.45)$, and (d) $(0.36,$ 0.48). The lines in (a) , (c) , and (d) indicate fits of the data to a single exponential decay.

Figure S8: Intermediate scattering function $f(q, \tau)$ as a function of τ/τ_0 and ϕ at $q\sigma_s \sim 0.07$ for δ of (a) 0.45 and (b) 0.36. The error bars correspond to standard deviation of the averaged measurements.

Comparison of self-intermediate scattering functions from DDM and SPT

Figure S9: $f(q, \tau)$ and $f^{\text{self}}(q, \tau)$ as a function of τ/τ_0 and ϕ at $q\sigma_s \sim 0.07$ for (a) $\delta = 0.71$, (b) $\delta = 0.45$, (c) $\delta = 0.36$, and (d) $\delta = 0.34$. Open symbols represent $f(q, \tau)$, and closed symbols represent $f^{\text{self}}(q, \tau)$. The error bars correspond to standard deviation of the averaged measurements. $f^{\text{self}}(q, \tau)$ was calculated from tracer trajectories obtained from SPT using $f^{\text{self}}(q, \tau) = \frac{1}{N} \sum_{m=1}^{N} \langle e^{-j\mathbf{q} \cdot [\mathbf{r}_m(t_0 + \tau) - \mathbf{r}_m(t_0)]} \rangle_{|\mathbf{q}| = q, t_0}$.

Effective diameter mapping

To account for the electrostatic interactions between particles, we calculate the repulsive potential $\beta U(D) = \pi \sigma_{\text{nom}} \epsilon \zeta^2 \exp(-\kappa D)$ as a function of distance D between particle surfaces in the low surface charge limit, where $\beta = (k_B T)^{-1}$ is the inverse thermal energy, σ_{nom} is the nominal particle diameter, ϵ is the solvent permittivity, and κ^{-1} is the Debye screening length. The suspensions were prepared in deionized water, but no care was taken to ensure that suspensions were near-salt-free. Thus, we calculate the repulsive potential for $\kappa^{-1} = 1$ nm and 10 nm, which approximately span the values reported for DI water in a non-salt-free environment. The effective hard sphere diameter σ_t is then obtained using the Barker-Henderson formalism^{[3](#page-13-2)} $\sigma_{\text{eff}} = \sigma_{\text{nom}} + \int [1 - \exp(-\beta U(D))] dD$. The nominal sizes σ_{nom} , zeta potentials ζ , and calculated effective sizes σ_{eff} are shown in Table [S4](#page-11-0) and [S5.](#page-11-1)

σ_{nom} (nm)	ζ (mV)	$\sigma_{\rm eff}~(\rm nm)$	$\delta_{\rm nom}$	δ_{eff}
47	-21 ± 6	50.0 ± 0.5	0.34	0.34
51	-27 ± 3	54.6 ± 0.2	0.36	0.38
63	-37 ± 3	67.5 ± 0.2	0.45	0.46
100	-40 ± 4	105.1 ± 0.2	0.71	0.72
120	-39 ± 4	125.2 ± 0.2		
140	-37 ± 6	145.3 ± 0.3		

Table S4: Nominal particle diameter σ_{nom} , zeta potential ζ , effective diameter σ_{eff} , nominal size ratio δ_{nom} and effective size ratio δ_{eff} for Debye length $\kappa^{-1} = 1$ nm

σ_{nom} (nm)	ζ (mV)	$\sigma_{\rm eff}$ (nm)	$\delta_{\rm nom}$	δ_{eff}
47	-21 ± 6	77 ± 5	0.34	0.40
51	-27 ± 3	$87 + 2$	0.36	0.45
63	-37 ± 3	107 ± 2	0.45	0.56
100	-40 ± 4	151 ± 2	0.71	0.78
120	-39 ± 4	172 ± 2		
140	-37 ± 6	192 ± 3		

Table S5: Nominal particle diameter σ_{nom} , zeta potential ζ , effective diameter σ_{eff} , nominal size ratio δ_{nom} and effective size ratio δ_{eff} for Debye length $\kappa^{-1} = 10$ nm

Determination of logarithmic relaxations

Logarithmic relaxations were identified by fitting $f(q, \tau)$ data for each wavevector to the logarithmic function: $f(q, \tau) = a \cdot \ln(\tau) + b$, where a and b are fitting parameters. We classified a given $f(q, \tau)$ curve as classified as exhibiting a logarithmic relaxation if the fit could be successfully performed over at least two decades in time. Figure [S10](#page-12-0) shows examples of the logarithmic fits applied to selected $f(q, \tau)$ curves.

Figure S10: Intermediate scattering function $f(q, \tau)$ as a function of τ/τ_0 and ϕ at $q\sigma_s \sim 0.07$ for exhibiting anomalous logarithmic decays of $f(q, \tau)$ for at least two decades in time for (a) $(\delta, \phi) = (0.36, 0.48),$ (b) $(\delta, \phi) = (0.34, 0.47),$ (c) $(\delta, \phi) = (0.34, 0.49)$ and (d) $(\delta, \phi) = (0.34, 0.50)$. The error bars correspond to standard deviation of the averaged measurements.

	Φ	$q^*\sigma_{\text{matrix(i)}}$	L^* $\sigma_{\text{matrix}(i)}$	Number of time decades
0.34	0.47	0.63	9.93	
	0.49	1.09	5.76	2.5
	0.50	1.09	5.76	2.5
	0.50	1.40	4.49	
0.36	$\rm 0.48$	1.02	6.16	2.5

Table S6: Samples exhibiting anomalous logarithmic decays of in $f(q, \tau)$ of at least two decades in time: wave vector $q^* \sigma_{\text{matrix}(i)}$, corresponding length scale in units of $\sigma_{\text{matrix}(i)}$ and time span of decay

References

- [1] W. C. K. Poon, E. R. Weeks and C. P. Royall, Soft Matter, 2012, 8, 21–30.
- [2] F. Giavazzi, V. Trappe and R. Cerbino, Journal of Physics: Condensed Matter, 2020, 33, 024002.
- [3] J. A. Barker and D. Henderson, The Journal of Chemical Physics, 1967, 47, 2856–2861.