# Electronic Supporting Information: Dynamics of nanoparticle tracers in supercooled nanoparticle matrices

Peter Edimeh, Ali H. Slim, and Jacinta C. Conrad\*

### Determination of the matrix volume fraction $\phi$

The volume fraction  $\phi$  of polystyrene (PS) particles within a suspension was determined by tracking the mass of the sample before and after samples were concentrated via centrifugation. First, the masses of the empty centrifuge membrane  $M_{\rm m}$  and filter tube  $M_{\rm ft}$  were determined. Using a pipette, 400  $\mu$ L of the PS suspension with  $\phi_{PS} = 10\%$  (mass  $M_{\rm t}$ ) was transferred into the centrifuge apparatus and the total mass of the centrifuge assembly (membrane, filter, and suspension)  $M_{\rm asm}$ was measured. The initial mass of the PS suspension  $M_{\rm s}$  was calculated by subtracting the mass of the assembled empty components from the mass of the assembly containing the suspension  $M_{\rm s} = M_{\rm asm} - (M_{\rm m} + M_{\rm ft})$ . We estimated that the mass of PS particles  $M_{\rm PS} = 0.1 M_{\rm s}$  (based on the weight fraction) and then calculated the volume of PS particles  $V_{\rm PS}/\rho_{\rm PS}$ , where  $\rho_{\rm PS} = 1.055 \times 10^{12}$ g  $\mu {\rm m}^{-3}$ . Similarly, the mass of water  $M_{\rm w} = M_{\rm s} - M_{\rm PS}$  and the volume of water  $V_{\rm w} = M_{\rm w}/\rho_{\rm w}$ , where  $\rho_{\rm w} = 0.997 \times 10^{12}$  g  $\mu {\rm m}^{-3}$ . The total suspension volume was  $V_{\rm t} = V_{\rm PS} + V_{\rm w}$ , leading to the initial volume fraction  $\phi_i = V_{\rm PS}/V_{\rm t}$ .

Suspensions were centrifuged at 8000 rpm for a given duration depending on desired  $\phi$ . We measured the mass of the membrane + residue,  $M_{m+r}$  and the mass of the filter tube containing the filtrate  $M_{ft+f}$  and subsequently determined the residue mass  $M_r = M_{m+r} - M_m$  and filtrate mass  $M_f = M_{ft+f} - M_{ft}$ . The residue contained PS particles along with a small amount of water of mass  $M_{r,w} = M_r - M_{PS}$ . The volume of water in the residue was then  $V_{r,w} = M_{r,w}/\rho_w$ . We assumed that the the volume of PS in the residue did not change, i.e.  $V_{r,PS} = M_{PS}/\rho_{PS}$ . The total volume of the residue  $V_r = V_{r,w} + V_{r,PS}$ . Finally, we determined  $\phi = V_{PS}/V_r$ . This process was designed to achieve an absolute The error on the determination of  $\phi$  within 3%, consistent with the typical The error in determining colloidal  $\phi^1$ . We note, however, that  $\phi$  is increased through the duration of centrifugation, and so the relative volume fractions are consistent.

## Tracking resolution $\epsilon$

| δ    | $\phi$      | G:W | $\Delta x \ (\mu m)$ | $\epsilon ~(\mu m)$ | N (pixel $\times$ pixel) | $N(\mu m \times \mu m)$ |
|------|-------------|-----|----------------------|---------------------|--------------------------|-------------------------|
| 0.71 | $\leq 0.45$ | 5:6 | 0.228                | 0.155               | $256 \times 256$         | $58.4 \times 58.4$      |
| 0.71 | > 0.45      | 5:6 | 0.152                | 0.105               | $256 \times 256$         | $38.9 \times 38.9$      |
| 0.45 | $\geq 0.45$ | 6:5 | 0.114                | 0.059               | $256 \times 256$         | $29.2 \times 29.2$      |
| 0.36 | $\leq 0.46$ | 6:5 | 0.114                | 0.255               | $256 \times 256$         | $29.2 \times 29.2$      |
| 0.36 | > 0.46      | 6:5 | 0.091                | 0.214               | $256 \times 256$         | $23.3 \times 23.3$      |
| 0.34 | $\leq 0.45$ | 6:5 | 0.091                | 0.231               | $256 \times 256$         | $23.3 \times 23.3$      |
| 0.34 | > 0.45      | 6:5 | 0.076                | 0.175               | $256 \times 256$         | $19.5 \times 19.5$      |

**Table S1:** Values of the tracking resolution  $\epsilon$  for the given tracer-matrix size ratio ( $\delta$ ), glycerol: water mixing ratio (G:W), and volume fraction ( $\phi$ ) values;  $\Delta x$  is the pixel size used in each series of experiments and N is the 2D-image size in (pixel × pixel) and ( $\mu$ m ×  $\mu$ m).

## Supplementary tracking figures



**Figure S1:** Ensemble averaged mean-squared displacement (MSD)  $\langle \Delta r^2 \rangle$  normalized by tracer diameter  $\sigma_s^2$  as a function of lag time  $\tau$  normalized by Brownian diffusion time  $\tau_0$  for various  $\phi$  at size ratios  $\delta$  of (a) 0.45 and (b) 0.36. Solid black lines indicate the scaling exponent  $\alpha$ , where MSD  $\propto \tau^{\alpha}$ . The MSD is diffusive when  $\alpha = 1$  and subdiffusive when  $\alpha < 1$ . The dashed lines represent the normalized tracking resolution  $\epsilon$ . The The error bars indicate one standard deviation over at least four replicates per state point.



**Figure S2:** Normalized MSD  $\langle r^2 \rangle / \sigma_s^2$  as a function of normalized lag time  $\tau / \tau_0$ , where  $\tau_0$  is the Brownian diffusion time for the large tracer,  $\delta = 0.71$  at  $\phi = 0.49$  and 0.50.



**Figure S3:** Non-Gaussian parameter  $\alpha_2$  as a function of normalized lag time  $\tau/\tau_0$ , where  $\tau_0$  is the Brownian diffusion time for each tracer, at various  $\phi$  for size ratio  $\delta$  values of (a) 0.45 and (b) 0.36. The error bars indicate one standard deviation over at least four replicates per state point.

## Differential dynamic microscopy

| δ    | $\phi$      | $\Delta x \; (\mu \mathrm{m})$ | $q_{\rm min}~(\mu { m m}^{-1})$ |
|------|-------------|--------------------------------|---------------------------------|
| 0.71 | $\leq 0.45$ | 0.228                          | 0.108                           |
| 0.71 | > 0.45      | 0.152                          | 0.161                           |
| 0.45 | $\geq 0.45$ | 0.114                          | 0.215                           |
| 0.36 | $\leq 0.46$ | 0.114                          | 0.215                           |
| 0.36 | > 0.46      | 0.091                          | 0.270                           |
| 0.34 | $\leq 0.45$ | 0.091                          | 0.270                           |
| 0.34 | > 0.45      | 0.076                          | 0.323                           |

Table S2: Pixel size  $\Delta x$  and theoretical minimum  $q_{\min}$  for the various samples.

| $\phi = 0.45$                       |                                      |                  |                                      |                   |                 |                   |            | $\phi = 0.46$              |            |                  |      |
|-------------------------------------|--------------------------------------|------------------|--------------------------------------|-------------------|-----------------|-------------------|------------|----------------------------|------------|------------------|------|
| $\delta =$                          | $\delta = 0.71 \qquad \delta = 0.45$ |                  | $\delta = 0.36 \qquad \delta = 0.34$ |                   | 0.34            | $\delta = 0.36$   |            | $\delta = 0.3\overline{4}$ |            |                  |      |
| $q\sigma_{ m s}$                    | s                                    | $q\sigma_{ m s}$ | s                                    | $q\sigma_{\rm s}$ | s               | $q\sigma_{\rm s}$ | s          | $q\sigma_{\rm s}$          | s          | $q\sigma_{ m s}$ | s    |
| 0.07                                | 0.82                                 | 0.07             | 0.92                                 | 0.07              | 0.90            | 0.06              | 0.80       | 0.07                       | 0.91       | 0.06             | 0.91 |
| 0.11                                | 0.91                                 | 0.11             | 0.92                                 | 0.08              | 0.85            | 0.09              | 0.80       | 0.08                       | 1.0        | 0.09             | 1.0  |
| 0.15                                | 0.91                                 | 0.14             | 0.94                                 | 0.09              | 0.82            | 0.12              | 0.85       | 0.09                       | 1.0        | 0.12             | 0.99 |
| 0.24                                | 0.91                                 | 0.16             | 0.93                                 | 0.11              | 0.82            | 0.14              | 0.66       | 0.11                       | 0.98       | 0.14             | 0.97 |
| 0.39                                | 0.90                                 | 0.22             | 0.94                                 | 0.15              | 0.88            | 0.21              | 0.67       | 0.22                       | 0.81       | 0.23             | 0.86 |
| 0.56                                | 0.88                                 | 0.27             | 0.94                                 | 0.18              | 0.88            | 0.23              | 0.78       | 0.26                       | 0.75       | 0.27             | 0.78 |
| 0.73                                | 0.83                                 | 0.33             | 0.93                                 | 0.22              | 0.75            |                   |            |                            |            |                  |      |
| 0.90                                | 0.78                                 | 0.38             | 0.93                                 | 0.26              | 0.89            |                   |            |                            |            |                  |      |
| 1.04                                | 0.71                                 | 0.43             | 0.92                                 |                   |                 |                   |            |                            |            |                  |      |
| 1.24                                | 0.59                                 | 0.50             | 0.88                                 |                   |                 |                   |            |                            |            |                  |      |
| $\phi = 0.47$                       |                                      |                  |                                      |                   | $\phi =$        | 0.48              | $\phi =$   | 0.49                       | $\phi =$   | 0.50             |      |
| $\delta = 0.71 \qquad \delta = 0.4$ |                                      | 0.45             | $\delta =$                           | 0.34              | $\delta = 0.36$ |                   | $\delta =$ | 0.34                       | $\delta =$ | 0.34             |      |
| $q\sigma_{ m s}$                    | s                                    | $q\sigma_{ m s}$ | s                                    | $q\sigma_{ m s}$  | s               | $q\sigma_{\rm s}$ | s          | $q\sigma_{\rm s}$          | s          | $q\sigma_{ m s}$ | s    |
| 0.07                                | 0.80                                 | 0.07             | 0.81                                 | 0.06              | 0.83            | 0.07              | 0.74       | 0.06                       | 0.66       | 0.06             | 0.63 |
| 0.10                                | 0.71                                 | 0.11             | 0.78                                 | 0.09              | 0.70            | 0.08              | 0.72       | 0.09                       | 0.61       | 0.10             | 0.52 |
| 0.16                                | 0.63                                 | 0.16             | 0.74                                 | 0.12              | 0.70            | 0.10              | 0.62       | 0.14                       | 0.63       | 0.16             | 0.40 |
| 0.23                                | 0.62                                 | 0.22             | 0.74                                 | 0.14              | 0.63            | 0.15              | 0.51       | 0.20                       | 0.64       |                  |      |
| 0.36                                | 0.60                                 | 0.38             | 0.61                                 | 0.23              | 0.65            | 0.20              | 0.46       | 0.23                       | 0.59       |                  |      |

**Table S3:** Stretching exponent s from fits of the ISFs to a stretched exponential function  $f(q, \tau) = \exp\{-(\Gamma(q)\tau)^s\}$  at specified normalized wavevectors  $q\sigma_s$  for various samples.



**Figure S4:** DDM structure function  $D(q, \Delta \tau)$  for (a)  $(\delta, \phi) = (0.71, 0.45)$ , (b)  $(\delta, \phi) = (0.71, 0.49)$ , (c)  $(\delta, \phi) = (0.34, 0.45)$ , and (d)  $(\delta, \phi) = (0.34, 0.49)$ .



**Figure S5:** DDM structure function  $D(q, \Delta \tau)$  for (a)  $(\delta, \phi) = (0.45, 0.45)$ , (b)  $(\delta, \phi) = (0.45, 0.49)$ , (c)  $(\delta, \phi) = (0.36, 0.45)$ , and (d)  $(\delta, \phi) = (0.36, 0.48)$ .



Figure S6: DDM structure function  $D(q, \Delta \tau)$  as a function of  $\tau/\tau_0$  and  $\phi$  at  $q\sigma_s \sim 0.07$  for (a)  $\delta = 0.71$ , (b)  $\delta = 0.45$ , (c)  $\delta = 0.36$ , and (d)  $\delta = 0.34$ . The error bars correspond to standard deviation of the averaged measurements.



Figure S7: Collective intermediate scattering function  $f(q, \tau)$  as a function of normalized lag  $\tau/\tau_0$  for exhibits single exponential decay for  $(\delta, \phi) = (a) (0.45, 0.45), (b) (0.45, 0.49), (c) (0.36, 0.45), and (d) (0.36, 0.48).$  The lines in (a), (c), and (d) indicate fits of the data to a single exponential decay.



Figure S8: Intermediate scattering function  $f(q, \tau)$  as a function of  $\tau/\tau_0$  and  $\phi$  at  $q\sigma_s \sim 0.07$  for  $\delta$  of (a) 0.45 and (b) 0.36. The error bars correspond to standard deviation of the averaged measurements.



Comparison of self-intermediate scattering functions from DDM and SPT

**Figure S9:**  $f(q,\tau)$  and  $f^{\text{self}}(q,\tau)$  as a function of  $\tau/\tau_0$  and  $\phi$  at  $q\sigma_s \sim 0.07$  for (a)  $\delta = 0.71$ , (b)  $\delta = 0.45$ , (c)  $\delta = 0.36$ , and (d)  $\delta = 0.34$ . Open symbols represent  $f(q,\tau)$ , and closed symbols represent  $f^{\text{self}}(q,\tau)$ . The error bars correspond to standard deviation of the averaged measurements.  $f^{\text{self}}(q,\tau)$  was calculated from tracer trajectories obtained from SPT using  $f^{\text{self}}(q,\tau) = \frac{1}{N} \sum_{m=1}^{N} \left\langle e^{-j\mathbf{q}\cdot[\mathbf{r}_m(t_0+\tau)-\mathbf{r}_m(t_0)]} \right\rangle_{|\mathbf{q}|=q,t_0}$ .<sup>2</sup>

#### Effective diameter mapping

To account for the electrostatic interactions between particles, we calculate the repulsive potential  $\beta U(D) = \pi \sigma_{\text{nom}} \epsilon \zeta^2 \exp(-\kappa D)$  as a function of distance D between particle surfaces in the low surface charge limit, where  $\beta = (k_B T)^{-1}$  is the inverse thermal energy,  $\sigma_{\text{nom}}$  is the nominal particle diameter,  $\epsilon$  is the solvent permittivity, and  $\kappa^{-1}$  is the Debye screening length. The suspensions were prepared in deionized water, but no care was taken to ensure that suspensions were near-salt-free. Thus, we calculate the repulsive potential for  $\kappa^{-1} = 1$  nm and 10 nm, which approximately span the values reported for DI water in a non-salt-free environment. The effective hard sphere diameter  $\sigma_t$  is then obtained using the Barker-Henderson formalism<sup>3</sup>  $\sigma_{\text{eff}} = \sigma_{\text{nom}} + \int [1 - \exp\{-\beta U(D)\}] dD$ . The nominal sizes  $\sigma_{\text{nom}}$ , zeta potentials  $\zeta$ , and calculated effective sizes  $\sigma_{\text{eff}}$  are shown in Table S4 and S5.

| $\sigma_{\rm nom} \ ({\rm nm})$ | $\zeta$ (mV) | $\sigma_{\rm eff} \ ({\rm nm})$ | $\delta_{ m nom}$ | $\delta_{\mathrm{eff}}$ |
|---------------------------------|--------------|---------------------------------|-------------------|-------------------------|
| 47                              | $-21 \pm 6$  | $50.0\pm0.5$                    | 0.34              | 0.34                    |
| 51                              | $-27 \pm 3$  | $54.6\pm0.2$                    | 0.36              | 0.38                    |
| 63                              | $-37 \pm 3$  | $67.5\pm0.2$                    | 0.45              | 0.46                    |
| 100                             | $-40 \pm 4$  | $105.1\pm0.2$                   | 0.71              | 0.72                    |
| 120                             | $-39 \pm 4$  | $125.2 \pm 0.2$                 | -                 | -                       |
| 140                             | $-37 \pm 6$  | $145.3\pm0.3$                   | -                 | -                       |

**Table S4:** Nominal particle diameter  $\sigma_{\text{nom}}$ , zeta potential  $\zeta$ , effective diameter  $\sigma_{\text{eff}}$ , nominal size ratio  $\delta_{\text{nom}}$  and effective size ratio  $\delta_{\text{eff}}$  for Debye length  $\kappa^{-1} = 1$  nm

| $\sigma_{\rm nom} \ ({\rm nm})$ | $\zeta$ (mV) | $\sigma_{\rm eff}$ (nm) | $\delta_{\rm nom}$ | $\delta_{\mathrm{eff}}$ |
|---------------------------------|--------------|-------------------------|--------------------|-------------------------|
| 47                              | $-21 \pm 6$  | $77\pm5$                | 0.34               | 0.40                    |
| 51                              | $-27 \pm 3$  | $87 \pm 2$              | 0.36               | 0.45                    |
| 63                              | $-37 \pm 3$  | $107 \pm 2$             | 0.45               | 0.56                    |
| 100                             | $-40 \pm 4$  | $151 \pm 2$             | 0.71               | 0.78                    |
| 120                             | $-39 \pm 4$  | $172 \pm 2$             | -                  | -                       |
| 140                             | $-37 \pm 6$  | $192 \pm 3$             | -                  | -                       |

**Table S5:** Nominal particle diameter  $\sigma_{\text{nom}}$ , zeta potential  $\zeta$ , effective diameter  $\sigma_{\text{eff}}$ , nominal size ratio  $\delta_{\text{nom}}$  and effective size ratio  $\delta_{\text{eff}}$  for Debye length  $\kappa^{-1} = 10$  nm

#### Determination of logarithmic relaxations

Logarithmic relaxations were identified by fitting  $f(q, \tau)$  data for each wavevector to the logarithmic function:  $f(q, \tau) = a \cdot \ln(\tau) + b$ , where a and b are fitting parameters. We classified a given  $f(q, \tau)$ curve as classified as exhibiting a logarithmic relaxation if the fit could be successfully performed over at least two decades in time. Figure S10 shows examples of the logarithmic fits applied to selected  $f(q, \tau)$  curves.



Figure S10: Intermediate scattering function  $f(q, \tau)$  as a function of  $\tau/\tau_0$  and  $\phi$  at  $q\sigma_s \sim 0.07$  for exhibiting anomalous logarithmic decays of  $f(q, \tau)$  for at least two decades in time for (a)  $(\delta, \phi) = (0.36, 0.48)$ , (b)  $(\delta, \phi) = (0.34, 0.47)$ , (c)  $(\delta, \phi) = (0.34, 0.49)$  and (d)  $(\delta, \phi) = (0.34, 0.50)$ . The error bars correspond to standard deviation of the averaged measurements.

| δ    | $\phi$ | $q^*\sigma_{\text{matrix}(i)}$ | $L^* (\sigma_{\text{matrix}(i)})$ | Number of time decades |
|------|--------|--------------------------------|-----------------------------------|------------------------|
| 0.34 | 0.47   | 0.63                           | 9.93                              | 2                      |
|      | 0.49   | 1.09                           | 5.76                              | 2.5                    |
|      | 0.50   | 1.09                           | 5.76                              | 2.5                    |
|      | 0.50   | 1.40                           | 4.49                              | 2                      |
| 0.36 | 0.48   | 1.02                           | 6.16                              | 2.5                    |

**Table S6:** Samples exhibiting anomalous logarithmic decays of in  $f(q, \tau)$  of at least two decades in time: wave vector  $q^*\sigma_{\text{matrix}(i)}$ , corresponding length scale in units of  $\sigma_{\text{matrix}(i)}$  and time span of decay

## References

- [1] W. C. K. Poon, E. R. Weeks and C. P. Royall, Soft Matter, 2012, 8, 21–30.
- [2] F. Giavazzi, V. Trappe and R. Cerbino, Journal of Physics: Condensed Matter, 2020, 33, 024002.
- [3] J. A. Barker and D. Henderson, The Journal of Chemical Physics, 1967, 47, 2856–2861.