Coupled dynamics in binary mixtures of colloidal Yukawa systems

Daniel Weidig and Joachim Wagner^{a)}

Institut für Chemie, Universität Rostock, 18051 Rostock, Germany

Compilation of the numerical values for the reduced long-time self-diffusion coefficient $D_{S,\alpha}^{(L),red}$ and stretched exponential parameters, relaxation rates $a_{\alpha\beta}$ and stretching exponent $b_{\alpha\beta}$, of binary Yukawa-suspensions of identically charged but differently sized species.

I. NUMERICAL DATA

TABLE I. Reduced long-time self-diffusion coefficient $D_{\rm S}^{({\rm L}),{\rm red}}$ of one-component Yukawa-suspensions in dependence on the particle diameter σ and number of effective charges $Z_{\rm eff}$ at number density ${}^1\rho = 1 \times 10^{18} \,{\rm m}^{-3}$.

$Z_{\rm eff}$	$\sigma=100\mathrm{nm}$	$\sigma=50\mathrm{nm}$	$\sigma=33\mathrm{nm}$	$\sigma=25\mathrm{nm}$	$\sigma=20\mathrm{nm}$
300	0.2771(24)	0.2765(22)	0.2757(25)	0.2749(21)	0.2761(22)
350	0.2193(26)	0.2172(20)	0.2171(17)	0.2176(18)	0.2175(18)
400	0.1689(23)	0.1687(20)	0.1686(22)	0.1678(19)	0.1680(15)
450	0.1308(21)	0.1277(15)	0.1272(15)	0.1264(12)	0.1267(12)
500	0.0907~(28)	0.0918(18)	0.0919(17)	0.0919(22)	0.0909(22)
550	0.0638(20)	0.0645(23)	0.0650(18)	0.0639(16)	0.0640(27)
600	0.0432(14)	0.0435(20)	0.0428(11)	0.0422(17)	0.0415~(20)

^{a)}Electronic mail: joachim.wagner@uni-rostock.de

TABLE II. Reduced long-time self-diffusion coefficients $D_{S,\alpha}^{(L),red}$ of binary colloidal suspensions in dependence on their number of effective charges Z_{eff} , their diameter ratio σ_A/σ_B and their number density ratio ${}^1\rho_B/{}^1\rho_A$. The larger species A has the diameter $\sigma_A = 100 \text{ nm}$ and total number density is ${}^1\rho_{tot} = 1 \times 10^{18} \text{ m}^{-3}$.

1. /1.	7	$\sigma_{ m A}/\sigma$	B = 2	$\sigma_{ m A}/\sigma$	$r_{\rm B} = 3$	$\sigma_{ m A}/\sigma$	$r_{\rm B} = 4$	$\sigma_{ m A}/\sigma$	$r_{\rm B} = 5$
$ ho_{ m B}/ ho_{ m A}$	$\mathcal{L}_{\mathrm{eff}}$	$D_{\mathrm{S,A}}^{(\mathrm{L}),\mathrm{red}}$	$D_{ m S,B}^{ m (L),red}$	$D_{\mathrm{S,A}}^{(\mathrm{L}),\mathrm{red}}$	$D_{\mathrm{S,B}}^{(\mathrm{L}),\mathrm{red}}$	$D_{\mathrm{S,A}}^{(\mathrm{L}),\mathrm{red}}$	$D_{\mathrm{S,B}}^{(\mathrm{L}),\mathrm{red}}$	$D_{\mathrm{S,A}}^{(\mathrm{L}),\mathrm{red}}$	$D_{ m S,B}^{ m (L),red}$
	300	0.338~(6)	0.216(3)	0.380(8)	0.182(3)	0.397(5)	0.1633(18)	0.419(5)	0.1485(20)
	350	0.273(5)	0.1665(22)	0.303(7)	0.137~(4)	0.324~(6)	0.1214(20)	0.342(5)	0.1100(18)
	400	0.213(4)	0.126(3)	0.240(4)	$0.1035\ (25)$	0.256(5)	0.0886(20)	0.2683(20)	$0.0793\ (15)$
1	450	0.167(4)	0.0952 (19)	0.185(4)	0.0749(22)	0.195(4)	0.0641 (16)	0.209(5)	0.0569(15)
	500	0.119(4)	0.0658(21)	0.133(4)	0.0522 (16)	0.144(4)	0.0445(12)	0.1511 (29)	0.0382(14)
	550	0.0827~(25)	0.0446~(12)	0.0948~(27)	0.0358(10)	0.101(5)	0.0301~(18)	0.1067~(22)	0.0257~(8)
	600	0.0554(29)	0.0298(17)	0.0640(27)	0.0232(12)	0.0681~(28)	0.0193(10)	0.0700(29)	0.0161(7)
	300	0.365~(6)	0.233(4)	0.417(7)	0.209(4)	0.451(7)	0.1941(23)	0.478(8)	0.183(3)
	350	0.296~(6)	0.182(4)	0.343(6)	0.1615(23)	0.372(7)	0.1468(25)	0.399~(6)	0.1367(21)
	400	0.234~(6)	0.139(3)	0.273~(5)	0.1203(27)	0.298(3)	0.1082(22)	0.325~(6)	0.1018(18)
2	450	0.181(5)	0.1040(18)	0.214(5)	0.0895~(26)	0.231(3)	0.0789(13)	0.253(7)	0.0729(13)
	500	0.130(4)	0.0727~(25)	0.154(5)	$0.0626\ (15)$	0.174(6)	0.0554(15)	0.188(7)	0.0504~(19)
	550	0.092(4)	0.0508(16)	0.112(4)	$0.0433\ (17)$	0.125~(6)	0.0380(13)	0.135(5)	0.0337~(10)
	600	0.063(4)	0.0337~(18)	0.074(4)	0.0278(10)	0.083(3)	0.0237(12)	0.090(4)	0.0215~(5)
	300	0.385(10)	0.250(4)	0.458(9)	0.2341(22)	0.492(10)	$0.2235\ (25)$	0.537(12)	0.2168(26)
	350	0.314(8)	0.195(4)	0.379(7)	0.1814(21)	0.417(7)	$0.1726\ (23)$	0.454(8)	0.1658(20)
	400	0.250(7)	0.150(3)	0.305~(9)	0.1386(23)	0.340(7)	0.1290(21)	0.373(11)	0.1231(21)
4	450	0.193(5)	0.1127(16)	0.236(8)	0.1022~(25)	0.267(10)	$0.0946\ (17)$	0.297(7)	0.0909(20)
4	500	0.142(4)	0.0802(21)	0.178~(6)	0.0732(18)	0.202~(6)	0.0674(18)	0.225~(6)	0.0633(17)
	550	0.101(5)	0.0563(22)	0.129(6)	$0.0495\ (13)$	0.148(7)	0.0460(18)	0.162~(6)	0.0429(15)
	600	0.067(4)	$0.0361\ (15)$	0.085~(6)	0.0320(21)	0.098(5)	0.0292(15)	0.110(6)	0.0274(15)

TABLE III. Exponential decay constant a and stretching exponent b of a virtually binary mixture in dependence on the particle diameter σ and its number of effective charges Z_{eff} at identical number densities ${}^{1}\rho_{\text{A}} = {}^{1}\rho_{\text{B}} = 5 \times 10^{17} \,\text{m}^{-3}$.

7	$\sigma = 10$	0 nm	$\sigma = $	50 nm	$\sigma = 33$	nm	$\sigma = 2$	25 nm
$\Sigma_{\rm eff}$	$a \ / \ \mathrm{ms}^{-1}$	b	$a \ / \ {\rm ms}^{-1}$	b	$a \ / \ {\rm ms}^{-1}$	b	$a \ / \ { m ms}^{-1}$	b
300	0.0404(5)	1.108(10)	0.0822(11)	1.115(7)	0.1245(9)	1.112(6)	0.1635(18)	1.112(5)
350	0.0320(4)	1.043~(6)	0.0642~(6)	1.043(4)	0.0980(8)	1.047(4)	0.1284(10)	1.044(4)
400	0.0243(5)	0.978(7)	0.0489(4)	0.9791(26)	0.0741(7)	0.981(5)	0.0988~(29)	0.978(18)
450	0.01786(23)	0.920(5)	0.0362~(6)	0.920(7)	0.0549(4)	0.920(4)	0.0729(6)	0.923(22)
500	0.01262(28)	0.864(8)	0.0255(5)	0.862(4)	0.0395(5)	0.869(4)	0.0518(4)	0.867(4)
550	0.0085(3)	0.807(14)	0.0173(5)	0.811(7)	0.0261(4)	0.810(5)	0.0348(4)	0.8095(27)
600	0.00508(15)	0.746(10)	0.0109(4)	0.756(8)	0.01651 (21)	0.754(5)	0.0216~(5)	0.754(5)

TABLE IV. Exponential decay constant a and stretching exponent b of binary Yukawa-suspensions of identical charged but differently sized colloidal particles in dependence on the number of effective charges Z_{eff} and the ratio of the species diameters σ_A/σ_B for a ratio of the number densities ${}^1\rho_B/{}^1\rho_A = 1$. The total number density for all suspensions is identical ${}^1\rho_{\text{tot}} = 1 \times 10^{18} \, \text{m}^{-3}$, the diameter of species A is constant $\sigma_A = 100 \, \text{nm}$.

/177			$\sigma_{ m A}/\sigma_{ m B}=2$			$\sigma_{ m A}/\sigma_{ m B}=3$			$\sigma_{ m A}/\sigma_{ m B}=4$	
0B/ μA Zeff	$\alpha\beta$	AA	AB	BB	AA	AB	BB	AA	AB	BB
500	$a_{\alpha\beta}$	0.0472(13)	0.0554(8)	0.0662(8)	0.0515(13)	0.0644(13)	0.0873(13)	0.0535(12)	0.0707(14)	0.1046(21)
nne	$b_{\alpha\beta}$	1.177(18)	1.094(11)	1.013(13)	1.211 (15)	1.085(11)	0.958(6)	1.224(12)	1.076(6)	0.918(8)
950	$a_{\alpha\beta}$	0.0385(7)	0.0433 (5)	0.0502(9)	0.0423(8)	0.0510(7)	0.0647(9)	0.0441(9)	0.0555(7)	0.0752 (12)
nee	$b_{\alpha\beta}$	1.101(10)	1.032(6)	(6) 0.960	1.136(11)	$1.028\ (10)$	0.911(9)	1.153(13)	1.023(6)	0.879~(10)
007	$a_{\alpha\beta}$	0.0297(6)	0.0332(5)	$0.0367\ (10)$	0.0335(8)	0.0387~(7)	0.0464(9)	$0.0355\ (10)$	0.0423 (8)	$0.0536\ (10)$
400	$b_{\alpha\beta}$	1.030(10)	$(7)\ 0.970$	0.911 (12)	1.066(9)	0.973(6)	0.871~(6)	1.086(11)	0.971(5)	0.847 (8)
1 150	$a_{\alpha\beta}$	0.0225(6)	$0.0243\ (10)$	0.0264(5)	0.0255(6)	0.0285~(6)	0.0328(8)	0.0270(7)	0.0311~(6)	0.0369(6)
т 400	$b_{\alpha\beta}$	0.966(7)	0.918(10)	0.867(8)	0.998(14)	0.918(8)	0.833 (8)	1.007(7)	0.915(9)	0.811 (6)
500	$a_{\alpha\beta}$	0.0166(5)	0.0174(4)	0.0184(4)	0.0185(4)	0.0202(4)	0.0221(5)	0.0196(6)	0.0218(6)	0.0248(6)
000	$b_{\alpha\beta}$	0.910(10)	0.866(9)	0.823(9)	0.924(8)	0.864(7)	0.798(5)	0.933~(13)	0.862~(11)	0.782(8)
Сил И	$a_{\alpha\beta}$	0.0111(4)	0.0116(5)	0.0121(5)	0.01258(28)	0.01338(28)	0.0144(4)	0.0137(3)	0.01468(29)	0.0161(5)
000	$b_{\alpha\beta}$	0.838~(10)	0.811(10)	0.780(10)	0.855(9)	0.809(7)	$0.758\ (10)$	0.865(8)	0.809(8)	$0.751 \ (10)$
600	$a_{\alpha\beta}$	0.0070(4)	0.0072(3)	0.0074(4)	0.0079(4)	0.0082(5)	0.0086(6)	0.00863(26)	0.0090(4)	0.0094(4)
000	$b_{\alpha\beta}$	0.773(17)	0.750(15)	0.728(15)	0.785(14)	$0.751 \ (16)$	0.714(19)	0.795(9)	0.755(9)	0.711(11)

TABLE V. Exponential decay constant a and stretching exponent b of binary Yukawa-suspensions of identical charged but differently sized colloidal particles in dependence on the number of effective charges Z_{eff} and the ratio of the species diameters σ_A/σ_B for a ratio of the number densities ${}^1\rho_B/{}^1\rho_A = 2$. The total number density for all suspensions is identical ${}^1\rho_{\text{tot}} = 1 \times 10^{18} \, \text{m}^{-3}$, the diameter of species A is constant $\sigma_A = 100 \, \text{nm}$.

Toterradene											
1 _ /1 _	-			$\sigma_{ m A}/\sigma_{ m B}=2$			$\sigma_{\rm A}/\sigma_{\rm B}=3$			$\sigma_{ m A}/\sigma_{ m B}=4$	
ρB/ βΑ .	$ ho_{\rm eff}$	$\alpha\beta$	AA	AB	BB	AA	AB	BB	$\mathbf{A}\mathbf{A}$	AB	BB
	006	$a_{\alpha\beta}$	0.0504(18)	0.0588(10)	0.0709(13)	0.0559(16)	0.0709(14)	0.0979(14)	0.0594(11)	0.0787(14)	0.1210(16)
	000	$b_{lphaeta}$	1.196(19)	1.117(9)	1.038(11)	1.251(22)	1.122(111)	0.991(4)	1.268(20)	1.114(11)	0.954(8)
	3EO ($a_{lphaeta}$	0.0409(7)	0.0466(9)	0.0541(11)	0.0465(10)	0.0566(11)	0.0733(11)	0.0498 (12)	0.0639(9)	0.0901(8)
	-	$b_{lphaeta}$	1.128(11)	$1.059\ (10)$	0.981(9)	1.175(17)	1.064(11)	0.946(7)	1.201(10)	1.062(8)	0.918(8)
	, 001	$a_{lphaeta}$	0.0330(10)	0.0363 (9)	0.0407(6)	0.0376(9)	0.0442(8)	0.0543(7)	0.0402(9)	0.0496(9)	0.0653(8)
	4000 -	$b_{lphaeta}$	1.070(16)	0.999 (10)	0.931(6)	1.105(12)	1.010(6)	0.903(7)	1.126(13)	1.007(7)	0.879(5)
c	, 150	$a_{lphaeta}$	0.0246(10)	0.0267~(15)	0.0292(11)	0.0289(9)	0.0328(7)	0.0388(8)	0.0320(10)	0.0375~(6)	0.0458(8)
4	-	$b_{lphaeta}$	0.992(17)	0.938(14)	0.882(11)	1.028(13)	0.945(10)	0.861(6)	1.056(14)	0.955(4)	0.841(7)
_	200 C	$a_{lphaeta}$	0.0181(6)	0.0191(4)	0.0205(5)	0.0213(6)	0.0237 (7)	0.0265(7)	0.0236(4)	0.02676(24)	0.0311(6)
	-	$b_{lphaeta}$	0.929(9)	0.881(5)	0.837(8)	0.953(9)	0.890(8)	0.817(8)	$(8) \ 0.979 \ (8)$	(7) 768.0	0.804(9)
_	2 0 2 2 2	$a_{lphaeta}$	0.0123(4)	0.0128(4)	0.0134(5)	0.0149(6)	0.0161(6)	0.0174(8)	0.0165(5)	0.01802(26)	0.0201(5)
	-	$b_{lphaeta}$	0.853(11)	0.821~(6)	0.786(8)	0.884~(11)	0.833~(10)	0.777(12)	0.899(11)	0.834(5)	0.765(6)
	, 600	$a_{lphaeta}$	0.00774(24)	0.00787(27)	0.00807(25)	0.0095(5)	0.0099(5)	0.0104(5)	0.0105(4)	0.0113(4)	0.0121(5)
	-	$b_{lphaeta}$	0.785(17)	$0.756\ (10)$	0.733(9)	0.809(15)	0.770(13)	0.727~(12)	0.818(12)	0.772(7)	0.722(9)

TABLE VI. Exponential decay constant a and stretching exponent b of binary Yukawa-suspensions of identical charged but differently sized colloidal particles in dependence on the number of effective charges Z_{eff} and the ratio of the species diameters σ_A/σ_B for a ratio of the number densities ${}^1\rho_B/{}^1\rho_A = 4$. The total number density for all suspensions is identical ${}^1\rho_{\text{tot}} = 1 \times 10^{18} \, \text{m}^{-3}$, the diameter of species A is constant $\sigma_A = 100 \, \text{nm}$.

				0			,				
1 / 1	~ 2			$\sigma_{ m A}/\sigma_{ m B}=2$			$\sigma_{ m A}/\sigma_{ m B}=3$			$\sigma_{ m A}/\sigma_{ m B}=4$	
PB/ PA	Zeff	$\alpha\beta \beta$	IA	AB	BB	AA	AB	BB	AA	AB	BB
	, 006	$a_{\alpha\beta} = 0$	0.0520(27)	0.0615(14)	0.0748(12)	0.0592(18)	0.0760(18)	0.1072(17)	0.0637(28)	0.0862(11)	0.1362(11)
		$b_{\alpha\beta}$ 1	.22(4)	1.139(10)	1.057(9)	1.26(29)	1.150(13)	1.024(8)	1.31(5)	1.154(9)	(7) 0.999 (7)
	, Oze	$a_{\alpha\beta} = 0$	0.0429(14)	0.0489(8)	0.0576(8)	0.0500(7)	0.0617(8)	0.0818(9)	0.0542(15)	0.0706(10)	0.1034(9)
	-	$b_{lphaeta}$ 1	.146(15)	1.073(9)	1.000(7)	1.217(28)	1.094(9)	0.974(7)	1.244(22)	1.099(9)	0.957(5)
	, 004	$a_{\alpha\beta} = 0$	0.0345(13)	0.0384~(7)	0.0436(7)	0.0405(15)	0.0488(6)	0.0612(8)	0.0450(13)	$0.0561\ (10)$	0.0765(14)
	400	$b_{\alpha\beta} = 1$.077(19)	1.012(10)	0.949~(6)	1.126(19)	1.035(7)	0.928(4)	1.171(19)	1.045(8)	0.911(6)
-	1ED ($a_{\alpha\beta} = 0$	0.0263 (10)	0.0287 (13)	0.0318(9)	0.0318(10)	0.0376(7)	0.0448(7)	0.0364(11)	0.0433 (8)	0.0551(11)
ť	100	$b_{\alpha\beta} = 1$.013(20)	0.953(12)	(9) 297 (6)	1.058(17)	0.978(10)	0.884(5)	1.098(18)	0.988(8)	0.871(6)
	, UU	$a_{\alpha\beta} = 0$	0.0195(8)	0.0210(6)	0.0225(6)	0.0242~(7)	0.0271(7)	0.0308(6)	0.0275(13)	0.0318(9)	0.0380(7)
		$b_{\alpha\beta} = 0$	0.941(14)	0.898(10)	0.849(7)	0.986(14)	0.915(9)	0.835~(6)	1.017(22)	0.927~(10)	0.828(4)
	, 220	$a_{\alpha\beta} = 0$	0.0134(6)	0.0141(4)	0.0149(4)	0.0174(8)	0.0185(6)	0.0203(6)	0.0195(7)	0.0221(5)	0.0250(6)
	-	$b_{\alpha\beta} = 0$	(.872 (12))	0.834~(10)	0.798(7)	0.914(21)	0.850(9)	0.788(8)	0.935(15)	0.864(6)	0.787(9)
	, UU	$a_{\alpha\beta} = 0$	0.0084(4)	0.0089(4)	0.0092(4)	0.0112(6)	0.0118(4)	0.01253(28)	0.0130(5)	0.0139(6)	0.0152(8)
	-	$b_{\alpha\beta} = 0$	0.788(24)	0.770(15)	0.744~(12)	0.834(18)	0.790(7)	0.741~(6)	0.847(14)	0.796(12)	0.738(13)

TABLE VII. Coupling constant ζ in dependence on the number of effective charges $Z_{\rm eff}.$

$Z_{\rm eff}$	300	350	400	450	500	550	600
$\zeta \times 10^2$	1.28_{2}	1.092_{14}	0.941_{13}	0.737_{11}	0.555_{9}	0.391_8	0.249_{7}