
Supplementary Information for

Mesoscale Modelling of Fibrin Clots: The Interplay be-
tween Rheology and Microstructure at the Gel Poin

S1 Supplementary Equations
The thermal fluctuation is included in the model by

mdṽi = ∑
j

(
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)
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where Wi j is a matrix of independent increments of a Wiener pro-
cess for each pair i, j of particles, and Wi j is its traceless symmetric
part, given by
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where D is the system dimensionality. To satisfy the fluctuation-
dissipation balance the amplitude of the thermal noises Ai j and Bi j

are related to the friction coefficients a and b through
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To describe the variation of the pressure with the density of the
system we adopt the Cole equation (a.k.a. Tait’s equation of state)
given by pi = c2ρ0/7

[
(ρi/ρ0)

7 −1
]
+ pb (S4) where c is the speed

of sound on the fluid, and ρ0 is the reference density. The term
c2ρ0/7 corresponds to the reference pressure of the system, given
by c2 = ∂ p/∂ρ|ρ=ρ0 . The parameter pb is a background pressure
that provides numerical stability by always keeping the system’s
pressure positive.

We adopt the Lucy kernel1 typically used in SDPD for the
interpolant function,
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h
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h
)3

, r/h < 1.

0, r/h > 1,
(S5)

where w0 = 5/π or w0 = 105/16π for two or three dimensions, re-
spectively. The reader is referred to2 for a comprehensive descrip-
tion of the SDPD method.

S2 Fractal dimension evaluation
Fractal geometry as a tool for assessing the intricacy of natural for-
mations introduced by Mandelbrot.3 When an item exhibits self-
similarity across different length scales, denoted as scale-free be-
havior, it qualifies as a fractal. This characteristic is governed by
power-law functions featuring a singular exponent, leading to a
non-integer dimension termed D f . In cluster analysis, the compu-
tation of D f from the radius of gyration (Rg) involves a linear fit
to Rg ∼ Mβ on a log-log scale. Here, D f = 1/β is the estimated
fractal dimension. We calculate the radius of gyration Rg of a clus-
ter using R2

g = 1/MA ∑
MA
i=1(ri − rcm)

2, where ri is the position of ith
particle and rcm is the center of mass of the cluster.

As particle volume fraction increases, the fractal dimension is
expected to increase, approaching 3 when the volume fraction is
1.4 Therefore, we limit our maximum concentration to φint = 15%,
which gives us D f > 2. Also, the fractal model can only be applied
to particle volume fractions less than 20%. At higher volume frac-
tions, the number of particles per cluster becomes so small that
using a fractal model, and hence power law dependencies, is no
longer justified.4

S2.1 Fractal Dimension at Gel Point

Some studies5 calculate the value of D f from analysis of the
viscoelastic data at the GP by the established relationship of
Muthukumar for the incipient gel network (D f = (10α −15)/(2α −
6) for 3D space).6 We use a numerical measure of the gel mi-
crostructure. The percolation theory defines the polymerizing sys-
tem as macroscopically homogeneous on a length scale L >> ε. In
contrast, for L << ε the sample-spanning network cluster is a ‘self-
similar’ or fractal object. The blob-like network structure of gels
has a profound impact on their features. A uniform distribution of
particles is seen when the concentration of particles inside a blob
is equal to the concentration of particles across the gel.

S3 Simulation Details

We conducted numerical simulations using the clustering aggre-
gation framework (based on the smoothed dissipative particle
dynamics method SDPD) previously introduced.7 We focus our
investigations on periodic three-dimensional systems and con-
sequently reported clusters with characteristic D f ranging from
1.56±0.1−2.18±0.04. Since the formed gel spans the whole sim-
ulation domain, which is periodic, we used an arbitrary bound-
ary condition8 approach for imposing the shear rate in SAOS (see
S4). The characteristic parameters of the SDPD method are shown
in the Table.S1. Simulations were performed using the software
LAMMPS modified to incorporate the SDPD model.9,10 To account
for the influence of the randomness of the bonding process, all the
simulations are conducted over five realizations, initialized with
different positions and velocities, in addition, we computed the
standard deviation of all reported results.
We use dimensionless parameters in our SDPD simulations. Thus,
we consider characteristic length (Lsdpd), mass (msdpd), and time
(τsdpd) units. The size of the interpolation kernel h, for an ade-
quate estimation of hydrodynamic interactions, is chosen as 4dx =
0.8Lsdpd. Bond distances (r0 = 0.25Lsdpd = 1.25dx) are defined to
be close to the equilibrium interparticle distance (dx) to avoid ar-
tificial density variations. By adjusting the bond distance, we tune
the elasticity modulus of the gels, calibrating the power low slope
of the elasticity modulus at the gel point. The chosen bond dis-
tance value directly affects our simulation’s power-law slope and
the elasticity modulus values. A smaller bond distance generally
leads to tighter bonding between particles, with a higher elas-
ticity modulus. In contrast, increasing the bond distance allows
for a more flexible gel, which may lower the elasticity modulus.
The bonding criteria r∗ = 0.4Lsdpd < h is fixed to ensure attain-
able gelling kinetics, within the simulation time modeled, avoid-
ing artificial long-range interactions. We consider bond strength,
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and stiffness parameter as DMorse = 300[msdpdL2
sdpdτ

−2
sdpd] and α =

1[Lsdpd]
−1. We define the mass density as ρ = 1[msdpd]/[Lsdpd]

3.
The equilibrium particle density is di = 1/dx3[1/L3

sdpd], whereas
the mass per particle is m0 = 0.008[msdpd] and the viscosity η =

10[msdpdLsdpdτsdpd]
−1. We set the kBT = 10−6[msdpdL2

sdpdτ
−2
sdpd] to

reduce the thermal fluctuation and minimize the noise-to-signal
ratio during the stress measurements in SAOS. dt considered as
dt < min(0.25h/cs,0.125h2/ν).11 Thus, the size of the time steps
was fixed on 10−4τsdpd to ensure lower density fluctuation.
For our SAOS study, we define the simulation time for each fre-
quency as the period required for the G′ and G′′ to reach steady-
state values. This stabilization typically occurs within approxi-
mately 10 cycles at each frequency. We apply averaging over the
last 5 cycles to ensure consistent results. The window time for gel
formation is the time needed to reach the final gel state, where
no bonds are being created, indicating that the network has stabi-
lized.

S4 Arbitary boundary conditions for imposing shear

We use the proposed boundary conditions by Moreno and Ellero.8

This approach is suitable for conducting rheological studies where
rheological characterization can be conducted using arbitrary flow
types (simple shear, extensional, mixed flow) in periodic simula-
tion domains. They adopt a domain decomposition scheme that
considers the system made by a core region (where the stress is
measured), a boundary condition region (where the characteristic
type of flow is imposed), and buffer regions (that stabilize the sys-
tem). We use buffer regions that expand over two-fold the size of
the interpolation kernel to ensure the system’s stability and sim-
ulate up to a satisfactory agreement the properties of the fluid.8

These boundary conditions are suitable for applying the oscilla-
tory shear over the gels percolating the simulation domain. In the
Fig. S1 sketch of the regions defined for SDPD simulations, the
type of boundary conditions defined according to the target veloc-
ity field is shown. Parameters used for boundary conditions are
shown in the Table. S2 according to the study we do in the next
section.

Fig. S1 Sketch of the regions defined for SDPD simulations, and the type
of boundary conditions defined according to the target velocity field. The
interpolated velocity field acts over particles in Ωbc. 8

S4.1 Box-size dependency study for arbitrary boundary con-
dition in the SAOS measurements

For implementing the arbitrary boundary condition, based on the
findings of Moreno and Ellero8, configuring the core size and
buffer zone is essential for optimizing boundary conditions in
SDPD under pure shear simulations. They showed a core size,
Lcore of approximately ≥ 5h (h is the kernel cutoff radius) is effec-
tive for accurately reproducing flow characteristics. They indicate
that maintaining a Lbu f f er/Lcore > 0.1 allows the buffer zone to
function effectively as a transitional region, minimizing boundary
layer artifacts by smoothing interactions between adjacent areas.
To investigate the stability and precision of SAOS simulations in
our finite domains boundary condition, we test various core sizes,
Lcore = 4.5h,5h,5.5h, fixed Lbu f f er = Lbc = 0.25Lcore and for 2 gel
states with high and moderate G′ slope, (Branched mechanism
at the final gel state and Highly-Connected mechanism at a state
above the gel point). Table. S3, compares the slopes of G′ and G′′

for the 3 core sizes. We select Lcore = 5h for SAOS simulations.
Using the lower limit for Lcore=5h comparing Lcore=5.5h creates
a smaller gap (core size), lower Reynolds number, and therefore
lower inertial effect, supporting a wider range of shear rates. It has
also sufficient precise results comparing the lower size, Lcore=4.5h.

S5 Stress measurements and fluid inertia effect in
oscillatory rheometry

We compute shear stresses on the core region (see arbitrary bound-
ary conditions) of the simulation domain. With measured stress,
we extract G′′ and G′. For small-amplitude oscillatory shear, the
stress response is also sinusoidal, but delayed by a phase delay, δ

(σ(t) = σ0sin(ωt + δ )). We extract G′′ and G′ by using the sine
sum identity equation: σ(t) = σ0sin(ωt)cos(δ ) +σ0cos(ωt)sin(δ ).
Then measured as G′′ = σ0/γ0sin(δ ) and G′ = σ0/γ0cos(δ ). The to-
tal viscous stress measured σ includes contributions from both the
solvent and the gel. However, to account only for the stress con-
tributions associated with gel-gel and solvent-gel interactions, we
subtract the viscous stress attributable to the solvent (σ(1−φgel))
from the total viscous part and keep the part of the gel. Here, φgel

corresponds to the actual volume fraction of the gel (or active par-
ticles) at the time of stress measurement. We must note that in our
simulations the control parameter is the initial concentration φint ,
which in principle may not coincide with the final gel fraction, de-
pending on the degree of conversion of passive to active particles.
This difference occurs because, at the gel point, some P particles
may remain.

It has been previously identified,12 that spurious measurements
in the stress at high frequencies and large gaps can emerge due
to inertial effects. Since those effects are ubiquitous in numerical
simulations, we subtract the apparent elastic modulus (ρω2s2/6)
from the measured G′. This artificial term does not describe any
rheological property and is composed of fluid density ρ, frequency
ω, and gap width s, reflecting the influence of fluid inertia.12

S6 Supplementary Tables
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Table S1 Input parameters of the SDPD method

Domain size [Lx ×Ly ×Lz] (40dx)×(40dx)×(40dx)
Total number of particles (Nt) 64000
Mass(m) 0.008
viscosity(η) 10
kBT 0.000001
Density(ρ0) 1
Pressure(p0) 0
Speed of sound (cs) 50
Time step (dt) 10−4

Initial lattice spacing(dx) 0.2
Cutoff radius (h) 4dx

Table S2 Parameters of arbitrary boundary condition

Lcore (5h)
Ly (10h)

Table S3 Study the effect of Lcore on G′′ and G′ slopes (in log scale) in
arbitrary boundary condition method 8 for Branched and Highly-Connected
mechanisms (above the gel point). (The maximum standard deviation is
±0.03 for modules slopes)

Mechanisms Core Sizes
Lcore = 4.5h Lcore = 5h Lcore = 5.5h

Branched G′slope = 1.95 G′slope = 1.98 G′slope = 1.99
G′′slope = 1.0 G′′slope = 1.01 G′′slope = 1.02

Highly−Connected(above gel point) G′slope = 0.40 G′slope = 0.43 G′slope = 0.43
G′′slope = 0.70 G′′slope = 0.72 G′′slope = 0.73
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