Supporting Information for

Size-Controlled Antimicrobial Peptide Drug Delivery Vehicles through Complex Coacervation

Thomas D. Vogelaar¹, Henrik Torjusen¹, and Reidar Lund^{1,2*}

¹Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo,

Norway

²Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, NO-0315 Oslo,

Norway

Table of Contents

- 1. SAXS form and structure factors for the fuzzy-surface complex coacervate model
- 2. Results and Discussion
 - 2.1. SAXS fitting parameters of the binary polymer-colistin C3Ms
 - 2.2. Swelling ternary coacervate systems
 - 2.3. Formation kinetics of ternary coacervate systems
- 3. References

1. SAXS form and structure factors for the fuzzy-surface complex coacervate model

1.1. Structure factors

In the case of micellar clusters, a structure factor is used to explain the scattering at low Q. The structure factor, $S(Q)_{cluster}$, is described by the following equations¹ (Equation S1-S6).

$$p = N_{clu} - floor(N_{clu})$$
(S1)

$$D = 2 \cdot R_{tot} \cdot f_{dist}$$
(S2)

$$S_x = \frac{\sin(Q \cdot D)}{Q \cdot D}$$
(S3)

$$S_n = \frac{2}{1 - S_x} - 1 - \frac{2\left(1 - S_x^{floor(N_{clu})}\right) \cdot S_x}{floor(N_{clu}) \cdot (1 - S_x)^2}$$
(S4)

$$S_{n1} = \frac{2}{1 - S_x} - 1 - \frac{2\left(1 - S_x^{(floor(N_{clu}) + 1)}\right) \cdot S_x}{(floor(N_{clu}) + 1) \cdot (1 - S_x)^2}$$
(S5)

$$S(Q)_{cluster} = (1-p) \cdot S_n + p \cdot S_{n1}$$
(S6)

In which N_{clu} is the number of cluster units, and f_{dist} is the distance correlation of the clusters. To describe the correlation peak at high Q values caused by polyelectrolyte charge correlations in the core of the C3Ms, a pseudo-structure factor is introduced ($S(Q)_{internal}$) (Equation S7).^{2,3}

$$S(Q)_{internal} = \frac{|C(Q)| \cdot e^{\frac{-(Q-Q_{local})^2}{2 \cdot (W \cdot Q_{local})^2}}}{W \cdot Q_{local} \cdot \sqrt{2\pi}}$$
(S7)

In which C(Q) is the fractal scattering, Q_{local} is the structure peak position, and W is the relative width of the local Q.

1.2. Form factors

To describe the fuzzy-surface complex coacervate micelle, a form factor for fuzzy spheres was used $(P_{Coa}(Q))$ (Equation S8-S12).^{4,5}

$$F_{0} = \left(\frac{R_{in}}{\sigma_{in}^{2}} + \frac{1}{\sigma_{in}}\right) \cdot \frac{\cos\left(Q \cdot (R_{in} + \sigma_{in})\right)}{Q^{4}} - \frac{3 \cdot \sin\left[\cos\left(Q \cdot (R_{in} + \sigma_{in})\right)\right)}{Q^{5} \cdot \sigma_{in}^{2}} + \left(\frac{R_{in}}{\sigma_{in}^{2}}\right) + \left(\frac{R_{in}}{\sigma_{in$$

$$F_{1} = \frac{-3 \cdot \sin\left(Q \cdot (R_{in} + \sigma_{in})\right) + 6 \cdot \sin\left(Q * R_{in}\right)}{Q^{5} \cdot \sigma_{in}^{2}} - \frac{2 \cdot R_{in} \cdot \cos^{[i0]}(Q \cdot R_{in})}{Q^{4} \cdot \sigma_{in}^{2}}$$
(S9)

$$V_n = \frac{R_{in}^3}{3} + \frac{R_{in} \cdot \sigma_{in}^2}{6}$$
(S10)

$$A_{core}(Q) = \frac{F_0 + F_1}{V_n} \tag{S11}$$

$$P_{Coa}(Q) = A_{core}(Q)^2 \qquad (S12)$$

The form factor includes spheres with graded interfaces described by the radius R_{in} and width of the interface, σ_{in} . $A_{core}(Q)$ is the scattering amplitude of the fuzzy core, which, to obtain the form factor, is squared. Lastly, the Debye form factor for polymers and polyelectrolytes $(P_{Debye}(Q))$ is given in Equation S13.⁶

$$P_{Debye}(Q) = \frac{2(e^{-Q^2 \cdot R_g^2} - 1 + Q^2 \cdot R_g^2)}{(Q^2 \cdot R_g^2)^2}$$
(S13)

In which the R_g is the radius of gyration of the polymer/polyelectrolyte. From the fits, we can calculate some of the features of the C3Ms. We start with the average molecular weight of the complex coacervate micelle (M_w) in Equation S14.

 M_{w}

$$= P \cdot \left(f_{mix0poly1} \cdot \left(M_{PMAA_1} + M_{PEO_1} \right) + f_{mix0poly2} \cdot \left(M_{PMAA_2} + M_{PEO_2} \right) + (1) \right)$$
(S14)

Where P is the aggregation number (number of chains per micelle), $f_{mix0poly1}$ is the molar fraction of polymer 1 in the micelles, M_{PMAA1} is the molecular weight of the PMAA block of polymer

1, M_{PEOI} is the molecular weight of the PEO block of polymer 1, $f_{mix0poly2}$ is the molar fraction of polymer 2 in the micelles, M_{PMAA2} is the molecular weight of the PMAA block of polymer 2, M_{PEO2} is the molecular weight of the PEO block of polymer 2, f_{mix0} is the total molar fraction of polymer in the micelles, M_{Col0} is the molecular weight of colistin without the sulfate salt. Furthermore, we can also calculate the fraction of water inside the core with the following equations (S15-S17). We start with the dry volumes of the PMAA and colistin core (V_{cp}), PEO (V_{sp}) and the total dry volume (V_{tot}):

$$V_{cp} = \frac{(1 - f_{mix0}) \cdot \frac{M_{Col0}}{d_{Col}} + f_{mix0poly1} \cdot \frac{M_{PMAA_{1}}}{d_{PMAA}} + f_{mix0poly2} \cdot \frac{M_{PMAA_{2}}}{d_{PMAA}}}{(S15)}$$

$$\frac{f_{mix0poly1}}{V_{sp}} - \frac{\frac{M_{PEO_{1}}}{d_{PEO}} + f_{mix0poly2}}{N_{A}} \cdot \frac{M_{PEO_{2}}}{d_{PEO}}}{N_{A}}$$
(S16)

$$V_{tot} = V_{cp} + V_{sp} \tag{S17}$$

Where d_{Col} is the density of colistin, d_{PMAA} is the density of the PMAA block, d_{PEO} is the density of the PEO block, and N_A is Avogadro's number. Now we can calculate the wet volume of the micelle and determine the water fraction in the micelle through Equations S18 and S19.

$$V_{c} = 4\pi \cdot \left(\frac{R_{in}}{3} + \frac{R_{in} \cdot \sigma_{in}^{2}}{6}\right)_{(S18)}$$
$$f_{w} = 1 - \left(\frac{V_{tot}}{V_{c}}\right)_{(S19)}$$

Where R_{in} is the core radius of the micelle and σ_{in} is its density distribution, both obtained from the fits. For a more detailed explanation of the model features and mass balance calculations, we refer to a previous publication.³ A summary of the parameters used and their categorisation (fixed, calculated, experimental, or fitting parameters) is given in Table S1.

Model	Category	Values for fixed	Description
parameters / f ₊		parameters	
M_{Col} (Da)	Fixed	1405.65	Molecular weight colistin sulfate
$\Delta \rho_{Col} (\mathrm{cm}^{-2})$	Fixed	1.24.1011	SLD colistin
$\Delta \rho_{PMAA} (\text{cm}^{-2})$	Fixed	1.09.1011	SLD colistin
$\Delta \rho_{PEO} (\text{cm}^{-2})$	Fixed	1.11.10 ¹¹	SLD PEO block
$\Delta \rho_{Core} (\text{cm}^{-2})$	Calculated		SLD average in core
$\Delta \rho_{Solvent} (\text{cm}^{-2})$	Fixed	9.43·10 ¹⁰	SLD solvent buffer

Table S1. Summary of parameters used in the fitting model.

$f_{mix0}(-)$	Fixed	0.09296 or 0.05076	Total molar polymer fraction in C3M
$f_{mix0polv1}(-)$	Calculated		Molar polymer 1 fraction in C3M
$f_{mix0polv2}(-)$	Calculated		Molar polymer 1 fraction in C3M
$c_{Polv1,2}$ (mg/mL)	Experimental		Concentrations of polymer 1 and 2
c_{Col} (mg/mL)	Experimental		Concentration of colistin
φ(-)	Calculated		Volume fraction (from concentrations)
P (-)	Fitting parameter		Aggregation number
σ_{in} (nm)	Fitting parameter		Density distribution of radius
R_{in} (nm)	Fitting parameter		Core radius of micelle
d_{Col} (g cm ⁻³)	Fixed	1.35	Density colistin
d_{PEO} (g cm ⁻³)	Fixed	1.20	Density PEO block
d_{PMAA} (g cm ⁻³)	Fixed	1.20	Density PMAA block
$M_{PEO1,2}$ (Da)	Fixed	Depending on polymer	Molecular weight PEO blocks
$M_{PMAA1,2}$ (Da)	Fixed	Depending on polymer	Molecular weight PMAA blocks
R_{tot} (nm)	Calculated		Total radius of micelle
$f_{coa}(-)$	Calculated		Fraction of material forming coacervates
$R_{g,Col}$ (nm)	Fixed	0.64	Radius of free colistin molecules
$R_{g,Poly}(nm)$	Fixed	Polymer sizes from Table 1	Radius of free polymer molecules
fclu (-)	Fitting parameter if necessary (cluster)		Fraction of clusters
N _{clu} (-)	Fitting parameter if necessary (cluster)		Number of micelles per cluster
<i>f</i> dist (-)	Fitting parameter if necessary (cluster)		Distance between clusters
C(Q)(-)	Fitting parameter		Fractal scattering of the internal structure
$f_{blob}(-)$	Fitting parameter		Fraction of blob scattering
ξ(-)	Fitting parameter		Blob correlation length
W(-)	Fitting parameter		Width of the internal structure peak
Q_{local} (Å ⁻¹)	Fitting parameter		Q position of the internal structure peak
M_{Col0} (Da)	Fixed	1165.5	Salt-free molecular weight colistin
$f_{Col}(-)$	Fitting parameter		Fraction of colistin in aqueous phase
$f_{Poly}(-)$	Calculated		Fraction of polymers in aqueous phase
$f_{mix}(-)$	Calculated		Molar fraction of polymers in aqueous phase
M_{w} (Da)	Calculated		Total molecular weight average of one
(ma/mI)	Calculated		Encongulation concentration of collictin
f(x)	Calculated		Water fraction in the micelle
$J_W(-)$	Fitting parameter		Polydispersity of the radius
1 DI (70)	Fitting parameter		1 organspersity of the faulus

2. Results and Discussion

2.1. SAXS fitting parameters of the binary polymer-colistin C3Ms

In Table S2, S3, and S4, the final states of the three different PEO-b-PMAA-colistin C3Ms are compared at 0.50 wt%, 0.25 wt% and 0.125 wt%, respectively.

Table S2. The most important fit parameters for PEO_{45} -b-PMAA₄₁-colistin C3Ms at 0.50 wt%, 0.25 wt% and 0.125 wt% were obtained from the fuzzy-surface complex coacervate model.

Model parameters / f ₊	0.50 wt%	0.25 wt%	0.125 wt%
M_{Col} (Da)	1405.65	1405.65	1405.65
$\Delta \rho_{Col} (\mathrm{cm}^{-2})$	1.24.1011	$1.24 \cdot 10^{11}$	1.24.1011
$\Delta \rho_{PMAA} (\mathrm{cm}^{-2})$	1.09.1011	1.09.1011	1.09.1011
$\Delta \rho_{PEO} (\mathrm{cm}^{-2})$	1.11.1011	1.11.1011	1.11.1011
$\Delta \rho_{Core} (\mathrm{cm}^{-2})$	1.24.1011	$1.24 \cdot 10^{11}$	1.24.1011
$\Delta \rho_{Solvent} (\text{cm}^{-2})$	9.43·10 ¹⁰	9.43·10 ¹⁰	9.43·10 ¹⁰
$f_{mix0}(-)$	0.09296	0.09296	0.09296
$c_{Poly} (\mathrm{mg/mL})$	1.62	0.81	0.41
c_{Col} (mg/mL)	3.38	1.69	0.84
P (-)	$1.4 \cdot 10^{3}$	$1.6 \cdot 10^3$	$1.2 \cdot 10^4$
σ_{in} (nm)	1.8	1.6	1.7
R_{in} (nm)	13.6	14.3	14.0

R_{tot} (nm)	15.4	16.0	15.8
$f_{coa}(-)$	0.84	0.84	0.84
$R_{g,Col}$ (nm)	0.64	0.64	0.64
$R_{g,Poly}(nm)$	2.4	2.4	2.4
$f_{clu}(-)$	0	0	0
$f_{dist}(-)$	1	1	1
C(Q)(-)	5.6.10-5	3.0.10-5	1.1.10-5
$f_{blob}(-)$	0.38	0.36	0.44
ξ(-)	3.8	3.3	3.2
W(-)	0.09	0.10	0.10
Q_{local} (Å ⁻¹)	0.22	0.22	0.22
M_{Col0} (Da)	1165.5	1165.5	1165.5
$f_{Col}(-)$	0.16	0.16	0.16
$f_{Polv}(-)$	0.16	0.16	0.16
$f_{mix}(-)$	0.093	0.093	0.093
M_{w} (Da)	$2.3 \cdot 10^{6}$	$2.7 \cdot 10^{6}$	$2.0 \cdot 10^{6}$
c_{ColC3M} (mg/mL)	2.8	1.4	0.71
$f_w(-)$	0.76	0.76	0.81
PDI (%)	18	17	17

Table S3. The most important fit parameters for PEO ₄₅ -b-PMAA ₈₁ -colistin C3Ms at 0.5	0 wt%, 0.2	25 wt% and
0.125 wt% were obtained from the fuzzy-surface complex coacervate model.		

Model parameters / f+	0.50 wt%	0.25 wt%	0.125 wt%
M_{Col} (Da)	1405.65	1405.65	1405.65
$\Delta \rho_{Col} (\mathrm{cm}^{-2})$	$1.24 \cdot 10^{11}$	$1.24 \cdot 10^{11}$	$1.24 \cdot 10^{11}$
$\Delta \rho_{PMAA} (\mathrm{cm}^{-2})$	1.09.1011	1.09·10 ¹¹	1.09.1011
$\Delta \rho_{PEO} (\mathrm{cm}^{-2})$	$1.11 \cdot 10^{11}$	$1.11 \cdot 10^{11}$	1.11.1011
$\Delta \rho_{Core} (\mathrm{cm}^{-2})$	$1.24 \cdot 10^{11}$	$1.24 \cdot 10^{11}$	1.24.1011
$\Delta \rho_{Solvent} (\text{cm}^{-2})$	9.43·10 ¹⁰	9.43·10 ¹⁰	9.43·10 ¹⁰
$f_{mix0}(-)$	0.05076	0.05076	0.05076
$c_{Polv} (mg/mL)$	1.41	0.71	0.35
c_{Col} (mg/mL)	3.59	1.79	0.90
P (-)	$1.4 \cdot 10^4$	4.8·10 ³	$5.4 \cdot 10^3$
$\sigma_{in} (\mathrm{nm})^{[\mathrm{a}]}$	0.0	0.0	0.0
$R_{in} (nm)^{[a]}$	35.0	30.2	35.3
R_{tot} (nm)	35.0	30.2	35.3
$f_{coa}(-)$	0.84	0.86	0.84
$R_{g,Col}$ (nm)	0.64	0.64	0.64
$R_{g,Polv}(nm)$	3.5	3.5	3.5
$f_{clu}(-)$	0.20	0.30	0.55
$f_{dist}(-)$	0.2	0.07	0.04
C(Q)(-)	7.2.10-5	3.2.10-5	1.3.10-5
$f_{blob}(-)$	0.24	0.28	0.32
ξ(-)	2.7	2.8	3.0
W(-)	0.08	0.07	0.07
Q_{local} (Å ⁻¹)	0.23	0.23	0.23
M_{Col0} (Da)	1165.5	1165.5	1165.5
$f_{Col}(-)$	0.15	0.14	0.16
$f_{Poly}(-)$	0.15	0.14	0.16
$f_{mix}(-)$	0.051	0.051	0.051
M_w (Da)	2.2.107	$7.8 \cdot 10^{6}$	$8.8 \cdot 10^{6}$
c_{ColC3M} (mg/mL)	3.0	1.5	0.75
$f_w(-)$	0.84	0.91	0.94
PDI (%)	22	22	21

^[a] It was not possible to extract a reliable width parameter for these systems, most likely due to the increased polydispersity. The size is still extracted well based on the R_{in} parameter.

		1	
Model parameters / f ₊	0.50 wt%	0.25 wt%	0.125 wt%
M_{Col} (Da)	1405.65	1405.65	1405.65
$\Delta \rho_{Col} (\mathrm{cm}^{-2})$	1.24.1011	1.24.1011	1.24.1011
$\Delta \rho_{PMAA} (\mathrm{cm}^{-2})$	1.09.1011	1.09.1011	1.09.1011
$\Delta \rho_{PEO} (\text{cm}^{-2})$	$1.11 \cdot 10^{11}$	$1.11 \cdot 10^{11}$	1.11.1011
$\Delta \rho_{Core} (\text{cm}^{-2})$	$1.24 \cdot 10^{11}$	$1.24 \cdot 10^{11}$	1.24.1011
$\Delta \rho_{Solvent} (\text{cm}^{-2})$	9.43·10 ¹⁰	9.43·10 ¹⁰	9.43·10 ¹⁰
$f_{mix0}(-)$	0.05076	0.05076	0.05076
c_{Polv} (mg/mL)	1.73	0.86	0.43
c_{Col} (mg/mL)	3.27	1.64	0.82
P (-)	$1.5 \cdot 10^4$	1.6.104	$1.0 \cdot 10^4$
$\sigma_{in} (nm)^{[a]}$	0.0	0.0	0.0
$R_{in} (\mathrm{nm})^{[a]}$	36.8	35.1	30.6
R_{tot} (nm)	36.8	35.1	30.6
$f_{coa}(-)$	0.87	0.86	0.84
$R_{g,Col}$ (nm)	0.64	0.64	0.64
$R_{g,Polv}(nm)$	3.5	3.5	3.5
$f_{clu}(-)$	0	0	0
$f_{dist}(-)$	1	1	1
C(Q)(-)	9.1.10-5	3.8 • 10-5	1.9.10-5
$f_{blob}(-)$	0.22	0.20	0.24
ζ(-)	2.0	1.5	1.3
W(-)	0.09	0.09	0.10
Q_{local} (Å ⁻¹)	0.23	0.23	0.22
M_{Col0} (Da)	1165.5	1165.5	1165.5
$f_{Col}(-)$	0.09	0.14	0.16
$f_{Polv}(-)$	0.09	0.14	0.16
$f_{mix}(-)$	0.051	0.051	0.051
M_w (Da)	$2.7 \cdot 10^7$	2.8.107	1.9.107
c_{ColC3M} (mg/mL)	2.9	1.4	0.68
$f_w(-)$	0.89	0.80	0.78
PDI (%)	22	19	14

Table S4. The most important fit parameters for PEO_{114} -b-PMAA₈₁-colistin C3Ms at 0.50 wt%, 0.25 wt% and 0.125 wt% were obtained from the fuzzy-surface complex coacervate model.

2.2. Swelling ternary coacervate systems

[[]a] It was not possible to extract a reliable width parameter for these systems, most likely due to the increased polydispersity. The size is still extracted well based on the R_{in} parameter.

In Figure S1, the SAXS patterns and fits of the ternary complex coacervate systems T5, T6, T7, and T8 are shown at 0.125 wt%, including their R_{tot} fit parameter (from the fuzzy-surface complex coacervate model) for the complete polymer molar fraction set ($0 \le \Psi \le 1$). In Figure S2, T3 and T4 ternary coacervate systems are shown to not swell at the complete polymer molar fraction set based on the fits from the fuzzy-surface complex coacervate model. Lastly, in Figure S3, the *PDI* behaviour (from the fuzzy-surface complex coacervate model) for the complete polymer molar fraction set is shown for T5, T6, T7, and T8 complex coacervate systems.

Figure S1. SAXS patterns of colistin-C3Ms formed from four different ternary coacervate formulations at 0.125 wt%. C3Ms were prepared from a combination of colistin and two other polymers: PMAA₄₆/PEO₄₅-b-PMAA₈₁ (T5, grey symbols, A), PMAA₄₆/PEO₁₁₄-b-PMAA₈₁ (T6, purple symbols, B), PEO₄₅-b-PMAA₁₅/PEO₄₅-b-PMAA₈₁ (T7, orange symbols, C), and PEO₄₅-b-PMAA₁₅/PEO₁₁₄-b-PMAA₈₁ (T8, yellow symbols, D). The

complete polymer molar fraction set $0 \le \Psi \le 1$ was investigated and fitted with the fuzzy-surface C3M model, while for visibility reasons only a couple of SAXS patterns are shown. The fit parameter R_{tot} is shown for T5, T6, T7, and T8 along the complete polymer molar fraction set (E).

Figure S2. From the fuzzy-surface C3M model fits, the C3M water content (f_w) was plotted against the molar fraction of PEO₄₅-b-PMAA₄₁ (T3, red squares and T4, green circles).

Figure S3. Polydispersity index (*PDI*) behaviour for T5 (grey squares), T6 (purple circles), T7 (orange triangles), and T8 (yellow rhombuses) ternary colistin complex coacervate systems for the complete polymer molar fraction set ($0 \le \Psi \le 1$). From the fuzzy-surface C3M model fits, the *PDI* values were plotted against the molar fraction of either PEO₄₅-b-PMAA₁₅ or PMAA₄₆.

2.3. Formation kinetics of ternary coacervate systems

In Figure S4, the power law behaviour of T1-T4 ternary coacervate systems for R_{tot} and P (from the fuzzy-surface complex coacervate model) is shown from the kinetic growth process over time, analysed with a TR-SAXS setup at 0.125 wt% and $\Psi = 0.50$.

Figure S4. Power law relation of R_{tot} and P on log-log scale for colistin-C3Ms from T1 (pink squares), T2 (blue circles), T3 (red triangles) and T4 (green rhombuses) analysed through TR-SAXS, including fits from the fuzzy-surface complex coacervate model. 1/3 fits for the first two are added to visualise the power law of equal density growth. We observe some density changes in the growth process of complex coacervates.

3. References

- 1 W. Burchard, K. Kajiwara and D. H. Whiffen, Proc. R. Soc. Lond. Math. Phys. Sci., 1997, **316**, 185–199.
- 2Y. N. Fang, A. M. Rumyantsev, A. E. Neitzel, H. Liang, W. T. Heller, P. F. Nealey, M. V. Tirrell and J. J. de Pablo, *Proc. Natl. Acad. Sci.*, 2023, **120**, e2302151120.
- 3T. D. Vogelaar, A. E. Agger, J. E. Reseland, D. Linke, H. Jenssen and R. Lund, *Biomacromolecules*, 2024, **25**, 4267–4280.
- 4I. Berndt, J. S. Pedersen, P. Lindner and W. Richtering, Langmuir, 2006, 22, 459-468.
- 5I. Berndt, J. S. Pedersen and W. Richtering, Angew. Chem., 2006, 118, 1769–1773.
- 6P. Debye, J. Phys. Colloid Chem., 1947, 51, 18–32.