## Enhancing Surface/Interface Activity and Wettability via Trimeric

## **Surfactant-Containing Mixtures**

Chao Zhang<sup>a</sup>, Jianlin Jiang<sup>a</sup>, Lili Zhou<sup>b\*</sup>, Bin Qin<sup>a\*</sup> and Fulin Qiao<sup>a\*</sup>

<sup>a</sup>Sinopec research institute of petroleum processing CO. LTD.

<sup>b</sup>School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China



Figure S1. Synthetic procedure of Citric-3C12.

## Material.

*N*,*N*-Dimethyl-1,2-ethanediamine, trimethyl citrate and 1-bromododecane were obtained from Innochem and used without further purification. CH<sub>3</sub>OH, CH<sub>3</sub>COCH<sub>3</sub>, and all organic solvents were purchased from Beijing Chemical Co. Milli-Q (18.2 M $\Omega$  M $\Omega$ ·cm) water was used in all experiments.

## Synthesis.

Compound **Citric-3C12** was synthesized as outlined in **Figure S1** and was characterized by <sup>1</sup>H NMR, mass spectrum. 2.34 g trimethyl citrate was dispersed in

20 mL N,N-Dimethyl-1,2-ethanediamine and stirred at 100  $^\circ\!\mathrm{C}$  for 4 h. The N,N-

Dimethyl-1,2-ethanediamine was then removed under reduced pressure, and the residue was recrystallized three times from methanol/ethyl acetate to afford intermediate **A**.

Intermediate A (4 g) and 1-bromododecane (8.9 g) were added to 100 mL of CH<sub>3</sub>OH/

CH<sub>3</sub>COCH<sub>3</sub> (v: v = 1:1) and heated at 45 °C for 72 h. The solvent was removed under

reduced pressure, and the residue was recrystallized three times from methanol/ethyl acetate, yielding **Citric-3C12** as white solid in 41% yield. <sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz):  $\delta$  = 0.88 (m, 9H), 1.12—1.39 (m, 46H), 1.80 (s, 8H), 2.52-2.64 (m, 4H), 2.71—2.82(m, 4H), 3.00—3.06 (m, 5H), 3.06—3.17 (m, 12H), 3.17—3.29 (m, 4H), 3.28—3.50 (m, 12H), 3.51—3.69 (m, 8H). MS-ESI (m/z): calculated: 1146.64; found: 495.40 ([M-2Br]<sup>2+</sup>/2). FTIR (KBr, cm<sup>-1</sup>): 3225, 2907, 2827, 1648, 1458, 1349, 1228,1073, 1015, 969, 906, 739.



Figure S2. <sup>1</sup>H NMR spectra of **Citric-3C12** in  $D_2O$ .



Figure S3. FT-IR spectra of Citric-3C12.

**Table S1.** Values of the CMC, interaction parameters ( $\beta^{\sigma}$ ,  $\beta^{m}$ ), interfacial composition ( $X^{\sigma}$ ), micellar composition ( $X^{m}$ ) Surface Excess ( $\Gamma_{max}$ ), and Area Per Molecule ( $A_{min}$ ) for

| the Citric-3C12/9-EOS | mixture in aqueous | solution at 2 | 2 <b>5.0</b> ℃ |
|-----------------------|--------------------|---------------|----------------|
|-----------------------|--------------------|---------------|----------------|

| X <sub>Citric-3C12</sub> | CMC (mM) | pC20 | X <sup>m</sup> | ₿ <sup>m</sup> | Χσ    | βσ      | Γ×10 <sup>-6</sup> (mol m <sup>-</sup><br>²) | A(Ų/mole<br>cule) | A <sub>ideal</sub> (Ų/mol<br>ecule) |
|--------------------------|----------|------|----------------|----------------|-------|---------|----------------------------------------------|-------------------|-------------------------------------|
| 1                        | 0.25     | 1.1  | -              | -              | -     | -       | 1.699                                        | 97.763            | -                                   |
| 0.9                      | 0.052    | 1.9  | 0.491          | -3.721         | 0.42  | -4.012  | 1.835                                        | 90.526            | 97.847                              |
| 0.8                      | 0.038    | 2.2  | 0.419          | -3.665         | 0.365 | -4.431  | 2.015                                        | 82.418            | 97.855                              |
| 0.7                      | 0.022    | 2.4  | 0.398          | -5.148         | 0.383 | -7.605  | 2.303                                        | 72.104            | 97.889                              |
| 0.6                      | 0.018    | 2.5  | 0.38           | -5.656         | 0.362 | -7.678  | 2.031                                        | 81.778            | 97.855                              |
| 0.5                      | 0.00455  | 2.6  | 0.334          | -8.123         | 0.323 | -6.773  | 1.855                                        | 89.543            | 97.861                              |
| 0.4                      | 0.018    | 2.8  | 0.309          | -4.969         | 0.404 | -11.050 | 1.683                                        | 98.679            | 97.849                              |
| 0.3                      | 0.018    | 3.1  | 0.279          | -4.922         | 0.334 | -9.764  | 1.208                                        | 137.563           | 97.859                              |
| 0.2                      | 0.017    | 2.8  | 0.256          | -5.302         | 0.292 | -8.746  | 1.713                                        | 96.9632           | 97.866                              |
| 0.1                      | 0.012    | 2.8  | 0.275          | -7.702         | 0.277 | -9.694  | 1.574                                        | 105.547           | 97.868                              |
| 0                        | 0.022    | 2.4  | -              | -              | -     | -       | 1.697                                        | 97.914            | -                                   |



Figure S4. Contact angle photographs of water on oil-wet silica gel surfaces



**Figure S5.** Contact angle photographs of oil-wet silica gel surfaces treated with **Citric-3C12/9-EOS** at at  $X_{\text{Citric-3C12}} = 1.0, 0.7, 0.5, 0.3 \text{ and } 0.$