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The figures below are all referred to and discussed in the main text. They provide additional 

results of interest, and also buttress some broader scientific statements and conclusions made 

in the main text.  In all the theoretical plots below, the black square open symbols represent 

results for the reference one-component hard sphere system. 
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Figure S1:  Log-log plots of the measured shear elastic (G’) and loss (G”) moduli as a function of shear 
stress (left) and frequency () (right) for granular-nanoparticle mixtures of varying granular particle 
packing fraction at a constant nanoparticle loading of 1.5% by volume. 

Figure S2:  Measured shear elastic modulus (G’) as a function of nanoparticle loading for granular-
nanoparticle mixtures with a constant granular particle packing fraction of G = 0.6.

Figure S3: Log-linear plot of the nondimensionalized elastic shear modulus as a function of colloid 

packing fraction  for fixed nanoparticle packing fraction  = 0.025 and size ratio D/d=10. All the 𝜙𝑚 𝜙𝑛

interactions between different species are purely hard-core repulsion.  
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Figure S4: Log-linear plot of the nondimensionalized elastic shear modulus  as a function of colloid 
packing fraction  with interfacial attraction between colloids and nanoparticles of contact strength 𝜙𝑚

 and range 0.002D. The NP packing fraction is  = 0.025, and the size ratio D/d=10. The other 3𝑘𝐵𝑇 𝜙𝑛

interactions between colloid-colloid and NP-NP are purely hard-core repulsion. 

Figure S5: Log-linear plot of the nondimensionalized elastic shear modulus as a function of 
nanoparticle packing fraction  for a mixture with an interfacial attraction between colloids and 𝜙𝑛

nanoparticles of contact strength  and range 0.002D, colloid packing fraction  = 0.6, and size 3𝑘𝐵𝑇 𝜙𝑚

ratio D/d=10. The colloid-colloid and NP-NP are purely hard-core repulsion. 
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Figure S6: Log-linear plot of the nondimensionalized elastic shear modulus as a function of colloid 
packing fraction  of a mixture with direct repulsions between colloids of strength  and range 𝜙𝑚 ‒ 2𝑘𝐵𝑇

0.1D, NP packing fraction  = 0.025, and size ratio D/d=10. The other interactions between colloid-𝜙𝑛

NP and NP-NP are purely hard-core repulsion. .

Figure S7: Log-linear plot of the dimensionless elastic shear modulus scaled by the mixed volumetric 
factor of as a function of (a) colloid packing fraction at fixed NP packing fraction 0.025,  and 𝐷1.35𝑑1.65

(b) nanoparticle volume fraction at fixed colloid packing fraction 0.60, for the colloid-NP interfacial 
attraction of strength 4kBT and range 0.002D mixture. An excellent collapse is obtained.

Theoretical Calculation of the Shear Modulus of Binary Mixtures

The time-dependent shear modulus is given by the following well known exact expression [1] 

𝐺(𝑡) ≡
1

𝑘𝐵𝑇𝑉
⟨𝜎𝑥𝑦𝑒Ω𝑡𝜎𝑥𝑦⟩                  (1)
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where  is the microscopic stress tensor, and  is the time evolution operator. Neglecting 𝜎𝑥𝑦 𝑒Ω𝑡

hydrodynamic interactions and using a simplified notation

𝜎𝑥𝑦 =
1
2

𝑁𝑡𝑜𝑡𝑎𝑙 

∑
𝑖,𝑗→1
𝑖 ≠ 𝑗

 𝑅𝑥
𝑖𝑗

∂𝑈𝑖𝑗(𝑅𝑖𝑗)
∂𝑅𝑦

𝑖𝑗

                     (2),

 where the sum is over all particle pairs in the mixture that interact via the pair potential 

 and  is the  component of the displacement vector between particles  and . A 𝑈𝑖𝑗(𝑟) 𝑅𝑥
𝑖𝑗 𝑥 𝑖 𝑗

collective bilinear projection operator associated with density fluctuations is then defined as 

[1]

𝑃⃐3 ≡
1
2

𝑉

(2𝜋)3∫ 𝑑𝑘
𝐸

∑
𝛼,𝛽,𝛾,𝛿

  ⟨⋯𝐴𝛽(𝑘)𝐴𝛼( ‒ 𝑘)⟩

 × 𝑆( ‒ 1)
𝛼𝛿 (𝑘)𝑆( ‒ 1)

𝛽𝛾 ( ‒ 𝑘)𝐴𝛿(𝑘)𝐴𝛾( ‒ 𝑘)        (3).

where   and . Eqn  𝐴𝛼(𝑘) ≡ (𝑁total 
𝛼 ) ‒ 1/2∑

𝑁total 
𝑙

𝑙 = 1  𝑒
‒ 𝑖𝑘 ⋅ 𝑅𝑗 ‒ 𝑁total 

𝛼 (2𝜋)3
𝑉 ‒ 1𝛿(𝑘) 𝑘 = 1,2,….𝐸

(1) is then approximated by projection of stress onto the density fluctuation variable:

Δ𝜂(𝑡)≅
1

𝑘𝐵𝑇𝑉⟨𝑃⃐3𝜎𝑥𝑦𝑒Ω𝑡𝑃⃐3𝜎𝑥𝑦⟩            (4)

Well-known algebraic manipulations then yield [1]

Δ𝜂(𝑡) =
1

2𝑘𝐵𝑇
1

(2𝜋)3∫ 𝑑𝑘
𝐸

∑
𝛼,𝛽,𝛾,𝛿

  
𝐸

∑
𝛼',𝛽',𝛾',𝛿'

  𝑈𝛼𝛽(𝑘)𝑈
𝛼'𝛽'(𝑘)

 × 𝑆 ‒ 1
𝛼𝛿 (𝑘)𝑆 ‒ 1

𝛼'𝛿'(𝑘)𝑆 ‒ 1
𝛽𝛾 (𝑘)𝑆 ‒ 1

𝛽'𝛾'(𝑘)𝑆
𝛾𝛾'(𝑘,𝑡)𝑆

𝛿𝛿'(𝑘,𝑡)               (5)

where                                   𝑈𝛼𝛽(𝑘) ≡ ⟨𝜎𝑥𝑦𝐴𝛼(𝑘)𝐴𝛽( ‒ 𝑘)⟩                          (6)

Integrating by parts allows Eq. (6) to be expressed as
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𝑈𝛼𝛽(𝑘) = 𝑘𝐵𝑇
1
2

𝑁𝑡𝑜𝑡𝑎𝑙 

∑
𝑖,𝑗→1
𝑖 ≠ 𝑗

 ⟨ ∂

∂𝑅𝑦
𝑖𝑗

𝑅𝑥
𝑖𝑗𝐴

𝛼(𝑘)𝐴𝛽( ‒ 𝑘)⟩               (7)

From Eq. (7) one obtains:

         𝑈𝛼𝛽(𝑘) = 𝑘𝐵𝑇
𝑘𝑥𝑘𝑦

𝑘
𝑑

𝑑𝑘
𝑆𝛼𝛽(𝑘)                     (8)

Substituting Eq. (8) into Eq. (5), and using Eqn (A2) of the Appendix of the main text, one 

obtains the key Eq.(7) of the main text for the dynamical elastic shear modulus in the long 

time limit . 𝑡→∞

References

[1]      G. Nägele and J. Bergenholtz, J. Chem. Phys., 1998, 108, 9893.

6


