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FIG. 1. Initialized one dimensional system, where ϕ and c are piecewise continuous over the

simulation domain. The droplet and the surrounding air phases are separated by an interface,

which is smooth during the dynamics. Here 2/5 of the system is droplet and the remainder is air.

I. ANALYTICAL MODEL

A. Set-up of the Analytical System

For the binary polymer-water system we create two fields, one (the phase field) for the

total mass of the droplet ϕ, and one for the polymer concentration c, which is essentially

non-zero only inside the droplets. The two fields are discretized over the same 1D lattice,

so that each lattice contains some finite value of ϕ and c.

We initialize a system with two phases, the droplet and the surrounding air, separated

by an interface, see for example Fig. 1. In phase 1, inside the droplet, we initialize ϕ = ϕ1

(= 1) and c to some other finite value c = c0, where c0 < ϕ1. In phase 2, the surrounding

air, we initialize c = 0 and ϕ = ϕ0 with ϕ0 < ϕ1, which then qualitatively represents the

Relative Humidity (RH).

Since the amount of solvent in the air phase should not significantly increase during a

simulation, as in reality would also not happen to the environment during evaporation, we

can safely allow ϕ not to be conserved in the surrounding phase.
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Furthermore, we used periodic boundary conditions, which means in the case of the

one-dimensional droplet there are two interfaces between the droplet and the air.

B. Applying Cahn-Hilliard to Evaporation of a Binary Polymeric Mixture

We start from the general Cahn-Hilliard expression for ϕ and add a convective term to

account for the advective flux driven by evaporation, similar to [1]. We consider the following

equation for the phase field ϕ:

∂ϕ(x, t)

∂t
+ vi∇ · ϕ = Mϕ∇ ·

[
∇ δF

δϕ(x)

]
. (1)

In this form, the phase field is not conserved as its time derivative does not equal a total

divergence. This is due to the vi · ∇ϕ term. We express the interfacial velocity as vi =

γ∇(ϕ− γ′

γ
c), where γ′ and γ are kinetic parameters. This phenomenological form is chosen

because the driving force for evaporation – hence for the motion of the gas/droplet boundary

– is provided by gradients in the water activity (in our model phenomenologically represented

by∇ϕ), which decreases with polymer concentration c. The ratio γ′

γ
gives the extent to which

the polymer reduces the evaporation rate. Using an alternative form for the evaporation

rate, that for instance depends on the local value of ϕ as v′i = ϕ× γ∇(ϕ− γ′

γ
c), gives nearly

identical results for the interface shrinkage ∆xi, settling in Diffusion-Limited Evaporation

(DLE), Fig. 2. Finally, we use the fact that δF
δϕ

= µϕ and assume that the mobility Mϕ is

constant. This leads to the following governing equation for the phase field ϕ:

∂ϕ(x, t)

∂t
+ vi · ∇ϕ = Mϕ∇2µϕ . (2)

We also require an equation for the polymer field, which reads:

∂c(x, t)

∂t
+∇ · (vc) = ∇ · (Mc(c)∇µc) , (3)

where c is conserved globally and we assume that the mobility of the polymer is dependent

on c as M(c) = M0

1+βc
. The polymer experiences a velocity v = −vi, which is the water

velocity that advects the polymer towards the interface.

Note that, another possible interpretation could be of ϕ and c as solvent and polymer

concentration, respectively. In that case the system would effectively be compressible where

there is an increase of c inside the drop. Since the total concentration of material (polymer
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and solvent) is equal to ϕ+ Ac, where A is a proportionality constant which is not strictly

defined, compressibility can be made negligible for small A.

The form of the solvent velocity v, and equivalently of the interfacial velocity vi, can

also be derived by noting that the force driving solvent flow in the Navier-Stokes equation

is −∇p, with p the pressure of water, which decreases with polymer concentration. As we

only use a 1d effective theory, a detailed derivation of the flow field is outside the scope of

the current work.

FIG. 2. Comparison of mass loss ∆xi(t) vs t
1/2 for the evaporation rate expressions vi = γ∇(ϕ− γ′

γ c)

and v′i = ϕ × γ∇(ϕ − γ′

γ c). Both simulations use the exact same parameters for the free energy

density f(ϕ, c), with ϕ0 = 0.4 and γ′/γ = 1.5. Striped black lines are linear fits to t1/2.

C. Free Energy Density and Chemical Potentials

To obtain the diffusive term we calculate the chemical potentials as functional derivatives

of the free energy density, that depends on the local values of ϕ and c:

µϕ =
δF

δϕ
=

∂f

∂ϕ
−∇ · ∂f

∂∇ϕ
, (4a)

µc =
δF

δc
=

∂f

∂c
−∇ · ∂f

∂∇c
. (4b)

We start from the following functional form for f :

f =
a1
4
(ϕ− ϕ0)

2(ϕ− ϕ1)
2 +

κϕ

2
(∇ϕ)2 +

κc

2
(∇c)2 − a0

2
ϕ2c2 +

b0
2
c2 +

b1
4
c4 (5)
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Here, the first term a1
4
(ϕ− ϕ0)

2(ϕ− ϕ1)
2 drives phase separation into two phases of compo-

sitions ϕ1 and ϕ0 ; the second and third terms
κϕ

2
(∇ϕ)2 and κc

2
(∇c)2 give the bare surface

tension of ϕ and c ; the fourth term a0
2
ϕ2c2 is a phase field phenomenological term which

favours the internalisation of the polymer inside the droplet; the fifth term b0
2
c2 represents

the virial coefficient for polymer diffusion; and the final term b1
4
c4 is the excluded volume

interaction of the polymer.

D. Energy Penalty for Polymer Evaporation

The phase field model as outlined in the above is purely interaction based through the

free energy density equation. Since polymer and solvent have affinity, in the current form of

Eq. 10 polymer will ‘leak’ into the outer phase. This is not physically unrealistic in liquid-

liquid systems, but will become an issue when there is a phase change over the interface like

in a gas-liquid system.

In a gas-liquid system, solvent molecules are easily transferred to the gas phase, e. g. this

does not require much energy. Thus, the energy contribution for ϕ to cross the interface and

move from liquid to gas can be safely ignored in Eq. 10.

The solute is involatile and unlikely to evaporate, so there should be an energy penalty

for c to cross the interface to the outer phase ϕ0. This can be implemented by adding a

term g(x)a2
2
c2 to our free energy density so that it becomes

f(ϕ, c) =
a1
4
(ϕ−ϕ0)

2(ϕ−ϕ1)
2+

κϕ

2
|∇ϕ|2+ κc

2
|∇c|2− a0

2
ϕ2c2+ g(x)

a2
2
c2+

b0
2
c2+

b1
4
c4 , (6)

where g(x) = Θ(ϕ(x) − ϕ1−ϕ0

2
) is an indicator function which is zero if ϕ1−ϕ0

2
> ϕ(x) and

one otherwise, and a2 is the energy penalty (units E/L2) for the polymer to be in the outer

phase.

E. Concentration Cap

When c increases to some concentration c = cg, the polymer gels and contributes a

permanent elastic stress to the system [2, 3]. This effect can be implemented into the free

energy by adding a term G(x)Kg

2
(c(x)− cg)

2, which now becomes

f(ϕ, c) =
a1
4
(ϕ−ϕ0)

2(ϕ−ϕ1)
2+

κϕ

2
|∇ϕ|2+κc

2
|∇c|2−a0

2
ϕ2c2+g(x)

a2
2
c2+G(x)

Kg

2
(c−cg)

2+
b0
2
c2+

b1
4
c4 ,

(7)
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where G(x) = Θ(c(x)− cg) is another indicator function which is zero if c(x) < cg and one

otherwise, and Kg (units E/L2) is the osmotic bulk modulus in the gel phase.

F. Chemical Potential Expressions

The chemical potentials used in the diffusive term read as follows:

µϕ =
∂f

∂ϕ
−∇ · ∂f

∂∇ϕ
= a1(ϕ− ϕ0)(ϕ− ϕ1)(ϕ− ϕ0 + ϕ1

2
)− a0c

2ϕ− κϕ∇2ϕ , (8a)

µc =
∂f

∂c
−∇ · ∂f

∂∇c
= −a0cϕ

2 + b0c+ g(x)a2c+ b1c
3 +G(x)Kg(c− cg)−

[
κc∇2c

]
. (8b)
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G. Parameter values

Since the phase field equations are not derived from coarse graining a microscopic model,

we need to choose all phenomenological parameters such that the system behaves realisti-

cally. The set of parameters that was used in our simulations for the free energy and the

conservation equations, in units of E (energy δE), L (length δx) and T (time δt), is given

in Table I.

TABLE I. Parameter values used in simulations.

Parameter Units Value

a1 E/L3 1.0-3.0

κϕ E/L 0.1

κc E/L 0.1-0.4

a0 E/L3 0.02

b0 E/L3 0.001-0.03

b1 E/L3 0.001

γ L2/T 0.0001

γ′ L2/T 0.00005-0.0003

Mϕ L3L2/ET 0.1

M0 L3L2/ET 0.025-0.1

β - 0.5-5.0

a2 E/L3 0.5

Kg E/L3 0.5

cg - 0.5-1.0
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H. Computational Methods

To solve the system Eq. 2, Eq. 3 and Eqs. 8, we used a Lattice-Boltzmann implementation

in C that iterates through the following steps:

1. Calculate gradients of ϕ and c in space using finite difference methods

∂f/∂x =
f(x+ h)− f(x− h)

2h
,

∂2f/∂x2 =
f(x+ h)− f(x− h)− 2f(x)

h2
;

2. Calculate µϕ(x) and µc(x) using Eqs. 8;

3. Calculate vi = γ∇(ϕ− γ′

γ
c) and gradients in µϕ(x) and µc(x) using finite difference;

4. Calculate ϕnew(x) and cnew(x) using Eq. 2 and Eq. 3, and update the system.
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II. STABILITY FOR INITIAL CONDITIONS

FIG. 3. Early times evolution of the profiles of ϕ and c, initialized using sinusoidal initial conditions

Eq. 9a and Eq. 9b.

The functional form of Eq. 7 suggests that the system should spontaneously phase sepa-

rate into a droplet phase and into an environment phase, which entails that the dynamics

in the system should be independent of the initial conditions. We test this hypothesis by

initializing a one-dimensional system with a sinusoidal distribution of ϕ and c as:

ϕ(x, t = 0) =
ϕ1 − ϕ0

2
× [sin (2πx/Lx) + 1] + ϕ0 , (9a)

c(x, t = 0) =
c0
2
× [sin (2πx/Lx) + 1] , (9b)

with Lx the total system size, as shown in Fig. 3. Using parameters from the range in

Table I, after a short initializiation period in which small droplets form in the air phase,

Fig. 3 (t = 40), we quickly retrieve a similar concentration profile to Fig. 1b in the main

manuscript, Fig. 3 (t = 80). In the long times regime, the familiar mass loss scaling m(t) ∼

∆xi(t) ∼ t1/2 is observed, Fig. 4.
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FIG. 4. Evolution of m(t) ∼ ∆xi(t) ∼ t1/2 for system initialized using sinusoidal initial conditions

Eq. 9a and Eq. 9b. Linear fit to t1/2 is provided to highlight the settling in DLE.

III. FLORY-HUGGINS IMPLEMENTATION IN THE MODEL

FIG. 5. Comparison of the evolution of the time exponent α between the Laundau and Flory-

Huggins models of the polymeric free energy density, with varying γ′/γ and ϕ0 = 0.40. Other

simulation settings for the Flory-Huggins implementation: b0 = 0.02 and χ = 0.001.

We show how our model can be adapted to using a different polymer model by replacing

the Landau expansion for the free energy by a Flory-Huggins model. For large degree of

polymerization N ≫ 1, the free energy density equation becomes:
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f(ϕ, c) =
a1
4
(ϕ− ϕ0)

2(ϕ− ϕ1)
2 +

κϕ

2
|∇ϕ|2 + κc

2
|∇c|2 − a0

2
ϕ2c2

+ g(x)
a2
2
c2 +G(x)

Kg

2
(c− cg)

2 + b0(1− c) ln (1− c) + χc(1− c) .

(10)

Therefore, neglecting any constant contributions, the chemical potential for the polymer

now reads:

µc =
∂f

∂c
−∇· ∂f

∂∇c
= −a0cϕ

2−b0 ln (1− c)+g(x)a2c+χ(1−2c)+G(x)Kg(c−cg)−
[
κc∇2c

]
.

(11)

The solvent chemical potential remains unchanged.

We compare implementations using a Landau expansion and a Flory-Huggins expression

in one line from the state diagrams in Fig 2 of the main manuscript, for varying γ′/γ and

constant ϕ0 = 0.4, in Fig. 5. Other simulation settings for the Flory-Huggins implementation

are b0 = 0.02 and χ = 0.001. Whilst the behaviour is qualitatively the same, a quantitative

difference is observed, where the transition from m(t) ∼ t1 to m(t) ∼ t1/2 is less sharp in

using the Flory Huggins equation. We explain this difference through the divergence of

b0 ln (1− c) for c → 1, meaning that there is more spreading near the interface at high c

which should lead to slight variations in the settling interface concentration ci, that depend

on the driving force, set by ϕ0.
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IV. EVAPORATION RATE AND GROWTH OF POLYMER LAYER

FIG. 6. Comparison of the evolution of the interface ∆xi and the polymer layer thickness L(t) in a

system with γ′/γ = 1.5 and ϕ0 = 0.35, plotted logarithmically to highlight the long time power-law

behaviour. The capping concentration is reached after approximately t = 100 timesteps.

Our physical interpretation of the DLE regime is that it is due to the buildup of polymer

at the interface. After the polymer concentration at the interface has reached c = cg, the

polymer layer grows inward as it is swept up by the shrinking interface into the droplet as

water molecules diffuse outwards to evaporate. Physically, we therefore expect the scaling

law L(t) ∼ m(t) to hold, where L(t) is the Full Width Half Maximum (FWHM) of the peak

in c near the interface and m(t) is the mass loss.

To test this scaling law we look at the exponents of the mass loss, e.g. the interface

shrinkage ∆xi, m(t) ∼ ∆xi ∼ tα and the polymer layer growth L(t) ∼ tβ in an evaporating

droplet where the polymer reaches its capping/gel concentration early in the simulation (Fig.

6). We determine the time exponents α = 0.56 and β = 0.60 by power-law fitting, which

are indeed similar.
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