## Supplemental Material: The shape of cleaved tethered membranes

A. D. Chen<sup>1</sup>, M. C. Gandikota<sup>1,2</sup> and A. Cacciuto<sup>1</sup>

 $^1Department \ of \ Chemistry, \ Columbia \ University$ 

3000 Broadway, New York, NY 10027

<sup>2</sup> International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India

## I. RADIUS OF GYRATION AS A FUNCTION OF SYSTEM-SIZE



FIG. S1. Power law fit of the radius of gyration  $R_{\rm g}$  of an ideal cleaved membrane as a function of the lateral size of the membrane, L. The fit has follows the functional form  $R_{\rm g} \sim L^{\nu}$ , where  $\nu = 0.51(1)$ , consistent with ideal polymers. Here, the edge-width  $d_e$  and strip-width w were both equal to 2, while  $\kappa = k_{\rm B}T$ .

## II. MASTER CURVE WITH DIFFERENT $\kappa$ SCALING



FIG. S2. The collapse of the rescaled radius of gyration as a function of  $w^{1.8}\kappa^{0.2}/L$  for different system-sizes L, bending constants  $\kappa$  and strip-widths w, as in reference [1]. It should be noted that this scaling parameter with  $\kappa^{0.2}$  does not produce as satisfactory of a collapse as compared to when  $\kappa^{1.5}$  for our data (see Fig. 3). In all cases, the edge-width  $d_e$  is set to be 2.



FIG. S3. Linear-log plot of self-avoiding cleaved membrane asphericity A as a function of w. Here, L = 60 and  $d_e = 1$ .

## IV. RADIUS OF GYRATION AS A FUNCTION OF EDGE-WIDTH



FIG. S4. Linear-log plots of  $R_g/L$  as a function of the strip width, w, for self-avoiding cleaved membranes of different side lengths L. The  $d_e$  were set to be (a) 2 or (b) 4.

[1] D. Yllanes, S. S. Bhabesh, D. R. Nelson and M. J. Bowick, Nature communications, 2017, 8, 1381.