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Nomenclature

H Half height of the nanochannel

δ Thickness of the dielectric liquid layer

E0 Magnitude of the applied oscillatory electric field

ω Angular frequency of the electric field

t Time

N0 Concentration of the additional mobile ions present in the dielectric liquid layer

Z Valence of the additional mobile ions present in the dielectric liquid layer

σ Charge density along the liquid-liquid interface

κ−1 EDL thickness at the interface side of aqueous medium

κ−1
d Equivalent EDL thickness towards the liquid-liquid interface

z Valence of the electrolyte ions

n0 Bulk electrolyte concentration
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ηd, ηe Viscosity of the membrane and electrolyte later, respectively

ϵd, ϵe Dielectric permittivity of the membrane and electrolyte later, respectively

kB Boltzmann constant

e Elementary charge

T Absolute temperature

F Faraday constant

NA Avogadro’s number

ni(y) Concentration of the ith ionic species

nd(y) Concentration of the additional mobile ions present in the dielectric liquid layer

R Gas constant

ψ(y) Electrostatic potential

r Radius of the ion

ψD Donnan potential

ρd(y), ρe(y) Net volumetric charge of the electrolyte ions inside and outside of the dielectric liquid layer

f Ion partitioning coefficient

u(y, t) Time dependent axial flow velocity component

ρ̃d, ρ̃e Mass density of the liquid in the peripheral layer and electrolyte solution, respectively

UHS Helmoltz-Smoluchowsky reference velocity

C(x, y, t) Concentration distribution of solutes

D0 Diffusivity constant

Pe Péclet number

K(t) Time dependent dispersion coefficient

Kavg Time-averaged effective dispersion coefficient

τ0 One oscillation period

Re Oscillating Reynolds number

Keff Effective dispersion coefficient

S.1 Spatial distribution of concentration of additional mobile

ions present in the dielectric liquid layer

Considering the finite ion size, the electrochemical potential of the additional ions (other than

electrolyte ions) is given as

µd(y) = µ0d + ZFψ(y) +RT ln
(
γd(y)nd(y)

)
(S1)
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where µ0d is a constant. The quantities γd(y), Z and nd(y) refer to the the ion activity coefficient,

valence, and concentration distribution of additional ions present in the liquid layer, respectively.

In equilibrium the electrochemical potential may be constant and thus,

ZFψ(y) +RT ln
(
γd(y)nd(y)

)
= ln(N0B) (S2)

where N0 represents the bulk molar concentration of the additional mobile ions in the peripheral

liquid layer and the normalization factor B may be deduced later in this section. Using equation

(S2) we may deduce the explicit form of concentration nd(y) of additional ion, given as

nd(y) =
N0B

γd(y)
exp

(
−ZFψ(y)

RT

)
(S3)

Note that the spatial distribution of concentration of additional ion must satisfies the following

relation ∫ −H+δ

−H
nd(y)dy = N0δ (S4)

In fact the equation (S4) represents the balance of the net volume charge of the additional ions

presents in the peripheral liquid layer. Substituting the equation (S3) into equation (S4), we

may deduce the explicit form of the normalization factor B, given as

B =
δ∫ −H+δ

−H
exp(−ZFψ(y)/RT )

γd(y)
dy

(S5)

Substituting (S5) into (S3) yields

nd(y) =

 N0δ∫ −H+δ
−H

exp(−ZFψ(y)/RT )
γd(y)

dy


exp

(
−ZFψ(y)

RT

)
γd(y)

 (S6)

Note that the position dependent volume fraction of the additional ions presents in the peripheral

liquid layer may be deduced as

ϕd(y) =
4πa3d
3

NAnd(y) (S7)

where NA and ad represent the Avogadro number and the radius of the additional ions presents

in the peripheral liquid layer, respectively. Thus, the mean volume fraction of the additional

ions ϕd may be deduced from the given relation

ϕd =
4πa3d
3δ

NA

∫ −H+δ

−H
nd(y)dy =

4πa3d
3

NAN0 (S8)

Using equations (S3) and (S8) into (S7), we may write

ϕd(y) =
ϕd
N0

nd(y) =
Bϕd
γd(y)

exp

(
−ZFψ(y)

RT

)
(S9)
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We may write the explicit form of ion activity coefficient based on Carnahan-Starling model [1],

given by [2]

γd(y) = exp


ϕd(y)

(
8− 9ϕd(y) + 3ϕ2d(y)

)
(
1− ϕd(y)

)3

 (S10)

Substituting equation (S10) into equation (S9) yields

ϕd(y) = Bϕd exp

−
ϕd(y)

(
8− 9ϕd(y) + 3ϕ2d(y)

)
(
1− ϕd(y)

)3

 exp

(
−ZFψ(y)

RT

)
(S11)

Note that the presence of free charges (other than electrolyte ions) within the peripheral liquid

layer may lead to non-zero charge density along the liquid-liquid interface. Thus, two EDLs

may forms at the interface, one along the water side and other one towards the liquid layer.

The thickness of EDL towards the water side and liquid layer sides are denoted as κ−1 and

κ−1
d , respectively. A detailed description of κ−1 is indicated in the main manuscript. Note that

thickness of the EDL towards the liquid layer side depends on the electrolyte concentration as

well as concentration of additional ions present in peripheral liquid layer. The explicit form of

κ−1
d may be deduced as [3, 4]

κ−1
d =

1√(
F 2

ϵdRT

){
ZN0 +

√
Z2N2

0 + 4f2z2n20

} (S12)

In our present study we consider the concentration of additional molar concentration is moderate

to high. Thus, for the undertaken range of concentration of electrolyte and additional ions

within the peripheral liquid layer, EDL thickness κ−1
d is in general lower that the thickness of

the peripheral liquid layer. For such a case, the EDL potential within the peripheral liquid

layer may be approximated by the Donnan potential ψD and ion activity coefficient γd(y) can

be approximated to γd (which is the value of γd(y) at ψ(y) ≈ ψD). Thus, the expression for

normalization constant B and ion activity coefficient γd may be deduced as follows

B = γd exp

(
ZFψD
RT

)
(S13)

and

γd = exp


ϕd

(
8− 9ϕd + 3ϕ2d

)
(
1− ϕd

)3

 (S14)
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Substituting equations (S13) and (S14) into equation (S11), we may write

ϕd(y) = ϕd exp

−

ϕd(y)
(
8− 9ϕd(y) + 3ϕ2d(y)

)
(
1− ϕd(y)

)3 −
ϕd

(
8− 9ϕd + 3ϕ2d

)
(
1− ϕd

)3


×

exp

{
−ZF
RT

(ψ − ψD)

} (S15)

The first order approximation ϕd(y) yields

ϕd(y) = ϕd
exp

{
− ZF

RT (ψ − ψD)
}

(1− Ω) + Ωexp
{
− ZF

RT (ψ − ψD)
} (S16)

where Ω = 8ϕd/(1 + 8ϕd). Note that the above expression is valid under the limit ϕd ≤ 0.1,

which is however reasonable. So, the modified Boltzmann distribution for finite sized additional

mobile ions may be deduced as follows

nd(y) = N0

exp
{
− ZF

RT (ψ − ψD)
}

(1− Ω) + Ωexp
{
− ZF

RT (ψ − ψD)
} (S17)

Note that if ϕd → 0 then the equation (S17) correctly merged with the standard Boltzmann

distribution applicable for the spatial distribution of point-like ions.

S.2 Additional results to support the findings

(a) (b)

Figure S.1: The time evolution of cross sectional averaged scaled mean concentration distribution

C̄m is shown as a functions of moving co-ordinate system x̄u and scaled time t̄ for (a) Pe = 15

and (b) Pe = 5. Other model parameters are same as considered in Fig. 7 appearing in main

manuscript (MS).
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(a) (b)

(c) (d)

Figure S.2: In Fig. (a-b) we have shown the time evolution of
√

2ξ(t̄) for various choices of (a)

κH (= 2.5, 5, 10, and 25) with fixed r = 3.3 Å and (b) r (= 3.3 Å, 4 Å, 5 Å, and 6 Å) with

fixed κH = 2.5. We have further shown the results for C̄m in Fig. (c-d) for similar choices of

other model parameters as in Fig. (a,b) at a fixed time t̄ = 0.5. Other model parameters values

are same as Fig. 8 appearing in main MS.
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(a) (b)

(c) (d)

Figure S.3: In Fig. (a,b) the time evolution of
√
2ξ(t̄) is shown for various values of (a) ϵR (=

0.1, 0.5, 0.75, and 0.9) with fixed ηR = 2.54 and (b) ηR (= 0.1, 0.7, 2.54, and 10) with fixed

ϵR = 0.1. For similar choices of parameters as in Fig. (a,b) we have shown the cross sectional

averaged concentration C̄m in Fig. (c,d) at fixed time. Other model parameters are same as

Fig. 9 appearing in main manuscript MS.
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(a) (b) (c)

Figure S.4: Time periodic dispersion coefficient K(t̄) − 1/Pe2 are shown as a function scaled

time t̄ for various values of (a) δ̄ (= 0.1, 0.2, and 0.3) with fixed σ̄ = 2, N0 = 1 mM; (b) σ̄ (=

0, 2, 5, and 10) with fixed N0 = 1 mM, δ̄ = 0.2 and (c) N0 (= 0, 1 mM, 10 mM, and 20 mM)

with fixed σ̄ = 2, δ̄ = 0.2. The results are presented for fixed for ϵR = 0.1, H = 25 nm, κH = 2.5

nm, r = 3.3 Å, ρR = 1.35, ηR = 2.54 and ω̄=10.
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(a) (b) (c)

(d) (e) (f)

Figure S.5: In Fig. (a,b,c) we have shown the time evolution of
√
2ξ(t̄) for various values of

(a) δ̄ (= 0.1, 0.2, and 0.3) with fixed σ̄ = 2, N0 = 1 mM; (b) σ̄ (= 0, 2, 5, and 10) with fixed

N0 = 1 mM, δ̄ = 0.2 and (c) N0 (= 0, 1 mM, 10 mM, and 20 mM) with fixed σ̄ = 2, δ̄ = 0.2.

In Fig. (d,e,f) we have further shown the results for C̄m at a fixed time t̄ = 0.5 for similar set of

pertinent parameters as considered in Fig. (a,b,c). The results are presented here considering

layer of CHB solvent adjacent to the supporting walls for fixed channel height H = 25 nm and

Pe = 25.
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(a) (b)

(c) (d)

Figure S.6: In Fig. (a,b) we have shown the results for time evolution of
√

2ξ(t̄) with various

values of (a) H (= 25 nm, 50 nm, and 100 nm) for fixed ω̄ = 10, and (b) ω̄ (= 10, 20, and 40)

for fixed H = 25. In Fig. (c,d) the cross-sectional averaged concentration C̄m are shown at fixed

time t̄ = 0.5 for similar set of other parameters as considered in Fig. (a,b). The other model

parameters are same as in Fig. 10 in main MS.
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(a) (b)

(c) (d)

Figure S.7: Time average dispersion coefficientKavg are shown as a function frequency ω/2π (Hz)

for various values of (a) ηR (= 0.1, 0.7, 2.54, and 10) with fixed δ̄ = 0.2, σ̄ = 2, N0 = 1 mM;

(b) δ̄ (= 0.1, 0.2, and 0.3) with fixed ηR = 2.54, σ̄ = 2, N0 = 1 mM; (c) σ̄ (= 0, 2, 5, and 10)

with fixed N0 = 1 mM, δ̄ = 0.2, ηR = 2.54 and (d) N0 (= 0, 1 mM, 10 mM, and 20 mM) with

fixed σ̄ = 2, δ̄ = 0.2. The results are presented here for fixed channel height H = 25 nm and

Pe = 25.
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