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1 Effect of Random Crosslinking on ψp and Cp(t)

Figure S1: Comparison of the first mode ψ1(n) for SCNPs (N = 200 and xc = 15%) with different
pairs of crosslinked monomers. The modes between two independent runs are distinct due to different
crosslinking interactions.

Figure S2: Comparison of the autocorrelation function Cp(t) (p = 1) for SCNPs (N = 200 and xc = 15%)
with different pairs of crosslinked monomers. Cp(t) is virtually identical between independent runs,
despite the modes being distinct from each other as shown in Fig. S1.
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Figure S3: Schematic of the local structural quantities that were computed for each SCNP prior to
UMAP. dij , dik, djk and θijk were calculated for all sets of 3-monomers {i, j, k} within the particle.

2 UMAP Procedure for Single Chain NPs

Uniform Manifold Approximation & Projection (UMAP) was performed on Gaussian kernel density
estimators (KDEs) of local structural information using the umap-learn package in Python. This ap-
proach was motivated by recent work from Reinhart and coworkers that characterized the self-assembled
morphologies of sequence-defined polymers using UMAP.1,2 Following their approach, the structural
quantities θijk = cos−1(rij · rik), dij = |rj − ri|, dik = |rk − ri|, djk = |rk − rj | and lijk = dij + dik were
computed for all possible sets of 3-monomers {i, j, k}, for all SCNP systems, at 500 000 time step intervals
during the production phase of the simulations. These values were combined into a single dataset and
used to generate histograms of their values (e.g., djk vs. θijk). The structural quantities are illustrated
in Fig. S3. Next, normalized KDEs (L1-norm) were generated from the histograms, examples of which
are shown in Fig. S4 for two unique SCNPs (N = 50, xc = 10%) (a) with residual correlations in Cp(t)
and (b) without. The full set of histograms and KDEs is provided in Section 3 of the ESI. Finally, the
normalized KDEs for different pairs of structural quantities were used as inputs to the UMAP procedure
(n neighbors = 5, min dist=0.1) to embed the SCNP systems into the local structure manifold Z.
We chose, arbitrarily, to label the axes of the embedding of (θijk, djk) as (Z0, Z1), of (θijk, lijk) as (Z0,
Z2), and of (djk, lijk) as (Z1, Z2),
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Figure S4: Structural histograms for SCNPs (N = 50, xc = 10%) for (a) a system exhibiting a residual
correlation in Cp(t) and (b) one without. In both (a) and (b), the top row is a histogram for (left to right)
pairs of structural quantities (θijk,djk), (lijk, djk), and (θijk, lijk). The bottom row contains normalized
Gaussian kernel density estimations (KDEs) of the histograms.
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3 Embedding of SCNPs into Z

The full results of the UMAP procedure are presented in Fig. S5 for different projections in Z. We found
the projection along (Z1, Z2) to most clearly show the similarities between the two classes of particles
observed from the simulations.

A B C

Figure S5: Manifold resulting from embedding (a) (θijk, djk), (b) (θijk, lijk), and (c) (djk, lijk) into Z.
Red crosses correspond to SCNPs with residual correlations in Cp(t) while black circles correspond to
SCNPs that fully decayed exponentially.
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4 Structural Histograms and KDEs for SCNPs

Figure S6: Local structure for SCNP with N = 50 and xc = 2.5% exhibiting long-time correlations in
Cp(t). The top row contains the histograms obtained from simulation snapshots, while the bottom row
contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S7: Local structure for SCNP with N = 50 and xc = 10% exhibiting long-time correlations in
Cp(t). The top row contains the histograms obtained from simulation snapshots, while the bottom row
contains Gaussian kernel density estimations (KDEs) of the histograms.
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Figure S8: Local structure for SCNP with N = 50 and xc = 10% that does not show long-time cor-
relations in Cp(t). The top row contains the histograms obtained from simulation snapshots, while the
bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S9: Local structure for SCNP with N = 50 and xc = 15% exhibiting long-time correlations in
Cp(t). The top row contains the histograms obtained from simulation snapshots, while the bottom row
contains Gaussian kernel density estimations (KDEs) of the histograms.
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Figure S10: Local structure for SCNP with N = 50 and xc = 15% that does not show long-time
correlations in Cp(t). The top row contains the histograms obtained from simulation snapshots, while
the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S11: Local structure for SCNP with N = 50 and xc = 20% exhibiting long-time correlations in
Cp(t). The top row contains the histograms obtained from simulation snapshots, while the bottom row
contains Gaussian kernel density estimations (KDEs) of the histograms.
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Figure S12: Local structure for SCNP with N = 50 and xc = 20% that does not show long-time
correlations in Cp(t). The top row contains the histograms obtained from simulation snapshots, while
the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S13: Local structure for SCNP with N = 100 and xc = 2.5% exhibiting long-time correlations in
Cp(t). The top row contains the histograms obtained from simulation snapshots, while the bottom row
contains Gaussian kernel density estimations (KDEs) of the histograms.
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Figure S14: Local structure for SCNP with N = 100 and xc = 10% that does not show long-time
correlations in Cp(t). The top row contains the histograms obtained from simulation snapshots, while
the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S15: Local structure for SCNP with N = 100 and xc = 15% that does not show long-time
correlations in Cp(t). The top row contains the histograms obtained from simulation snapshots, while
the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.
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Figure S16: Local structure for SCNP with N = 100 and xc = 20% that does not show long-time
correlations in Cp(t). The top row contains the histograms obtained from simulation snapshots, while
the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S17: Local structure for SCNP with N = 200 and xc = 2.5% that does not show long-time
correlations in Cp(t). The top row contains the histograms obtained from simulation snapshots, while
the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.
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Figure S18: Local structure for SCNP with N = 200 and xc = 10% that does not show long-time
correlations in Cp(t). The top row contains the histograms obtained from simulation snapshots, while
the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S19: Local structure for SCNP with N = 200 and xc = 15% that does not show long-time
correlations in Cp(t). The top row contains the histograms obtained from simulation snapshots, while
the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.
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Figure S20: Local structure for SCNP with N = 200 and xc = 20% that does not show long-time
correlations in Cp(t). The top row contains the histograms obtained from simulation snapshots, while
the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.
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