Supplementary Information (SI) for Soft Matter. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information:

Analysis of the Internal Motions of Thermoresponsive Polymers and Single Chain Nanoparticles

Michael J. A. $Hore^1$

¹Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44122, USA. hore@case.edu

Contents

1	Effect of Random Crosslinking on ψ_p and $C_p(t)$	2
2	UMAP Procedure for Single Chain NPs	3
3	Embedding of SCNPs into Z	5
4	Structural Histograms and KDEs for SCNPs	6

Figure S1: Comparison of the first mode $\psi_1(n)$ for SCNPs (N = 200 and $x_c = 15\%$) with different pairs of crosslinked monomers. The modes between two independent runs are distinct due to different crosslinking interactions.

Figure S2: Comparison of the autocorrelation function $C_p(t)$ (p = 1) for SCNPs $(N = 200 \text{ and } x_c = 15\%)$ with different pairs of crosslinked monomers. $C_p(t)$ is virtually identical between independent runs, despite the modes being distinct from each other as shown in Fig. S1.

Figure S3: Schematic of the local structural quantities that were computed for each SCNP prior to UMAP. d_{ij} , d_{ik} , d_{jk} and θ_{ijk} were calculated for all sets of 3-monomers $\{i, j, k\}$ within the particle.

2 UMAP Procedure for Single Chain NPs

Uniform Manifold Approximation & Projection (UMAP) was performed on Gaussian kernel density estimators (KDEs) of local structural information using the umap-learn package in Python. This approach was motivated by recent work from Reinhart and coworkers that characterized the self-assembled morphologies of sequence-defined polymers using UMAP.^{1,2} Following their approach, the structural quantities $\theta_{ijk} = \cos^{-1}(\mathbf{r}_{ij} \cdot \mathbf{r}_{ik})$, $d_{ij} = |\mathbf{r}_j - \mathbf{r}_i|$, $d_{ik} = |\mathbf{r}_k - \mathbf{r}_i|$, $d_{jk} = |\mathbf{r}_k - \mathbf{r}_j|$ and $l_{ijk} = d_{ij} + d_{ik}$ were computed for all possible sets of 3-monomers $\{i, j, k\}$, for all SCNP systems, at 500 000 time step intervals during the production phase of the simulations. These values were combined into a single dataset and used to generate histograms of their values (e.g., d_{jk} vs. θ_{ijk}). The structural quantities are illustrated in Fig. S3. Next, normalized KDEs (L^1 -norm) were generated from the histograms, examples of which are shown in Fig. S4 for two unique SCNPs (N = 50, $x_c = 10\%$) (a) with residual correlations in $C_p(t)$ and (b) without. The full set of histograms and KDEs is provided in Section 3 of the ESI. Finally, the normalized KDEs for different pairs of structural quantities were used as inputs to the UMAP procedure (**n_neighbors = 5, min_dist=0.1**) to embed the SCNP systems into the local structure manifold **Z**. We chose, arbitrarily, to label the axes of the embedding of (θ_{ijk}, d_{jk}) as (Z_0, Z_1), of (θ_{ijk}, l_{ijk}) as (Z_0, Z_2), and of (d_{jk}, l_{ijk}) as (Z_1, Z_2),

Figure S4: Structural histograms for SCNPs (N = 50, $x_c = 10\%$) for (a) a system exhibiting a residual correlation in $C_p(t)$ and (b) one without. In both (a) and (b), the top row is a histogram for (left to right) pairs of structural quantities (θ_{ijk}, d_{jk}), (l_{ijk}, d_{jk}), and (θ_{ijk}, l_{ijk}). The bottom row contains normalized Gaussian kernel density estimations (KDEs) of the histograms.

3 Embedding of SCNPs into Z

The full results of the UMAP procedure are presented in Fig. S5 for different projections in \mathbf{Z} . We found the projection along $(Z1, Z_2)$ to most clearly show the similarities between the two classes of particles observed from the simulations.

Figure S5: Manifold resulting from embedding (a) (θ_{ijk}, d_{jk}) , (b) (θ_{ijk}, l_{ijk}) , and (c) (d_{jk}, l_{ijk}) into **Z**. Red crosses correspond to SCNPs with residual correlations in $C_p(t)$ while black circles correspond to SCNPs that fully decayed exponentially.

4 Structural Histograms and KDEs for SCNPs

Figure S6: Local structure for SCNP with N = 50 and $x_c = 2.5\%$ exhibiting long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S7: Local structure for SCNP with N = 50 and $x_c = 10\%$ exhibiting long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S8: Local structure for SCNP with N = 50 and $x_c = 10\%$ that does not show long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S9: Local structure for SCNP with N = 50 and $x_c = 15\%$ exhibiting long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S10: Local structure for SCNP with N = 50 and $x_c = 15\%$ that does not show long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S11: Local structure for SCNP with N = 50 and $x_c = 20\%$ exhibiting long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S12: Local structure for SCNP with N = 50 and $x_c = 20\%$ that does not show long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S13: Local structure for SCNP with N = 100 and $x_c = 2.5\%$ exhibiting long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S14: Local structure for SCNP with N = 100 and $x_c = 10\%$ that does not show long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S15: Local structure for SCNP with N = 100 and $x_c = 15\%$ that does not show long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S16: Local structure for SCNP with N = 100 and $x_c = 20\%$ that does not show long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S17: Local structure for SCNP with N = 200 and $x_c = 2.5\%$ that does not show long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S18: Local structure for SCNP with N = 200 and $x_c = 10\%$ that does not show long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S19: Local structure for SCNP with N = 200 and $x_c = 15\%$ that does not show long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

Figure S20: Local structure for SCNP with N = 200 and $x_c = 20\%$ that does not show long-time correlations in $C_p(t)$. The top row contains the histograms obtained from simulation snapshots, while the bottom row contains Gaussian kernel density estimations (KDEs) of the histograms.

References

- [1] W. F. Reinhart, Computational Materials Science, 2021, 196, 110511.
- [2] A. Statt, D. C. Kleeblatt and W. F. Reinhart, Soft matter, 2021, 17, 7697–7707.