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This supplementary material presents two key elements in the interference between the Turing
pattern direction and the mechanical property of the stretched membranes. The first is an order
parameter of the internal degree of freedom corresponding to the polymer direction. Secondly, the
dependencies of directional energy on the interaction coefficient and the stretching ratio Rxy are
discussed.

1 Order parameter
First, we calculate the order parameter of the x component τx of
τ⃗;
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The variable τ⃗ of the models in R3 is constrained to be on the
tangential plane at vertex i, and its embedding space is not ex-
actly identified with R3. However, the standard non-polar order
parameter, as described in Eq. (1), is employed.

The parameter qx
τ for the models in R2 has values in the range

−1≤ qx
τ ≤ 1. In the configurations satisfying qx

τ ≃ 1 (qx
τ ≃−1), τ⃗

is assumed to be parallel to the x-axis (y-axis). If the condition
qx

τ ≃0 is satisfied, τ⃗ is assumed to be at random.

The parameter qx
τ for models in R3 has values in the range

−0.5≤qx
τ ≤1. In the configurations satisfying qx

τ ≃1 (qx
τ ≃−0.5),

τ⃗ is assumed to be parallel to the x-axis (has no component along
the x-axis). If the condition qx

τ ≃ 0 is satisfied, τ⃗ is assumed to
be at random. The simulation results are slightly deviated from
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these criteria, due to the above mentioned fact that the tangential
plane is used to define τ⃗.

1.1 Variation of order parameter versus interaction coeffi-
cient
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Fig. 1 (a) The order parameter qx
τ vs. λ with (b)–(e) snapshots of the

models in R2 for χ0 =0.5 (⃝), χ0 =0.1 (△) and χ0 =0.01 (□), and (f)
qx

τ vs. λ with (g)–(j) snapshots of model 1 in R3 for three different
combinations of the parameters. The dashed vertical line in (a) and (f)
represents the position of λ =0.6(≃λc).

As demonstrated in the main text, the parameter λ of the
Hamiltonian Hτ for the correlation between neighbouring pairs
of τ⃗ can be varied in our model. Moreover, the maximum entropy
is observed at λc≃0.6. It can therefore be concluded that the con-
figurations obtained at λ =0.6 are considered to be representative
of those observed in real membranes for all stretching ratios Rxy

close to Rxy=1.
We plot qx

τ vs. λ with the snapshots of TP of the models in R2
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(Figs. 1(a)–1(e)) and R3 (Figs. 1(f)–1(j)). In Fig. 1(a), we find
from the data qx

τ >0 (⃝) of model 1 (denoted by m1) that the τ⃗

direction is aligned with the x-axis for χ0 =0.5. The data qx
τ <0

(△) of model 2 indicate that the τ⃗ direction is aligned with the
y-axis. These directions of τ⃗, as a response to the stretching, are
consistent with the TP directions, as shown in the snapshots in
Figs. 1(b) and 1(d). In contrast, the data qx

τ <0 (□) of model 1
for χ0 =0.01 are in opposition to the data qx

τ >0 (⃝) of model 1
for χ0=0.5. The sole distinction between the two data sets is the
assumed value of χ0.

Here, we will present the reason why χ0 = 0.01 is inadequate
for the models that have been assumed. The order parameter qx

τ ,
which represents the TP direction, at χ0 =0.01 of model 1 in Fig.
1(d) is opposite to that at χ0 = 0.5 of model 1 in Fig. 1(b). In
the adequate case of Fig. 1(b), ΓG

i j along bond i j which is almost
parallel to the x axis, is smaller than ΓG

i j along bond i j which is
almost parallel to the y axis, as discussed in the main text. This
results in a larger tensile energy H1 or bond potential along the
x axis than along the y axis, which is consistent with the energy
transfer under stretching. Similarly, the diffusion energy HD

u , rep-
resented by the square of the gradient of u, exhibits a structure
analogous to that of the bond potential and thus also undergoes
the directional energy transfer (supplementary material (3)). We
should recall that the unit Finsler length χi j for H1 is of the sine
type in model 1, whereas it is of the cosine type when applied
to HD

u irrespective of the models. Consequently, the directional
diffusion energy results in a reduction of HD

u along the x axis than
along the y axis, thereby making the TP direction along the x axis
for χ0=0.5 in model 1.

In contrast, in the inadequate case of Fig. 1(d) for χ0 = 0.01,
the value of ΓG

i j along bond i j that is almost parallel to the x axis
is larger than the value of ΓG

i j along bond i j that is almost parallel
to the y axis. Therefore, this consequence of the mechanical prop-
erty by the FG modelling is inconsistent with the configurations
stretched along the x axis: the bond length ℓi j becomes longer
along the x axis than along the y axis as a result of the stretch-
ing, while the extensive part of the energy ℓ2

i j becomes small in
response to the large intensive part ΓG

i j. It is crucial to note that
the directional energy transfer in the diffusion energy HD

u is not
directly controlled by the stretching. Instead, it is indirectly reg-
ulated, as the TP direction depends on the τ⃗ direction, which is
regulated by the stretching through the FG modelling. Conse-
quently, the TP directions obtained for χ0 =0.01 are also deemed
to be non-physical.

The results qx
τ of model 1 in R3 also depend on χ0 (Fig. 1(f)).

The data (□) for χ0=0.01 are smaller than those (⃝) for χ0=0.5.
The reason is analogous to the case of the models in R2, where
χ0 = 0.01 is too small for the purpose of the present study. The
large fluctuations in the data (△) for large λ region are due to the
randomly determined spontaneous TP directions expected under
Rxy=1.

It must be noted that qx
τ (△) in Fig. 1(f) for the case of Rxy =1

does not satisfy the condition qx
τ =0. Instead, it is a positive con-

stant, which implies a violation of the equi-partition theorem that
is universally satisfied in three-dimensional systems. The reason
for this violation can be attributed to the fact that, as previously

mentioned, the tangential plane at vertex i is the reference plane
for τ⃗i, and thus the effective dimension for τ⃗i is expected to be
smaller than 3.
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Fig. 2 The order parameter qx
τ (•) and coefficients Γ

G,b
µ ,(µ=x,y) (⃝,△)

of model 1 in (a) R2 and (b) R3 in the case Rxy =1. Γ
G,b
x are almost the

same as Γ
G,b
y , which are are not depicted in (b). The error bars denote

the standard deviation.

It can be deduced that long-range order is not present from
the observation that qx

τ (≃0) remains constant. We find from Figs.
2(a),(b) that the models of both R2 and R3 exhibit this behaviour
qx

τ ≃0 (•) in the λ range for Rxy=1 with χ =0.5. Even for large λ

regions, τ⃗ aligns along a spontaneous direction only locally, and
therefore, no long-range order is expected. For this reason, the
corresponding mechanical anisotropy does not appear and the
isotropic mechanical property remains unchanged under the λ

variation. The ΓG
x and Γb

x plotted in Figs. 2(a),(b) are indepen-
dent of λ , and the y components Γ

G,b
y (plotted only in Fig. 2(a))

are nearly indistinguishable from Γ
G,b
x . This observation indicates

an absence of mechanical anisotropy for Rxy=1.

1.2 Variation of order parameter under stretching
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Fig. 3 (a) The order parameter qx
τ vs. Rxy with (b),(c) snapshots of

model 1 (⃝) and model 2 (△) in R2 for χ0 = 0.5, and (d) qx
τ vs. Rxy

with (e),(f) snapshots of models 1 and 2 in R3 for κ =3 and κ =1. The
variation of qx

τ vs. Rxy is compatible with the directional energy transfers,
which are presented in the main text.

To confirm the relation between the τ⃗ direction and the energy
transfer, we plot qx

τ vs. Rxy with snapshots in Figs. 3(a)–(f) for
the models in R2 and R3. In Fig. 3(a), the expected behaviour is
observed in the variation of qx

τ vs. Rxy of model 1 (⃝) and model
2 (△) in R2 at χ0 = 0.5. This variation of qx

τ is compatible with
the energy transfer from HG,y

1 to HG,x
1 as confirmed in the main
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text. The data plotted in Fig. 3(d) for the models in R3 exhibit an
analogous behaviour and are consistent with the energy transfer
as observed in the models in R2.

2 Variation of directional energy exchange
Here, we discuss the dependencies of the directional energy ex-
change on the interaction coefficient λ and the stretching ratio
Rxy.

2.1 Dependence on interaction coefficient and stretching ra-
tio
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Fig. 4 The directional energy components (a) ΓG
µ and hµ

1 vs. λ , (b)
ΓG

µ hµ

1 vs. λ of model 1 in R2 for χ0=0.5. (c) ΓG
µ and hµ

1 vs. Rxy and (d)
ΓG

µ hµ

1 and h1 vs. Rxy with (d)–(h) snapshots of models 1 and 2 in R2.
The dashed vertical line on (a) and (b) indicated by (↑) is the position
of λ =0.6.

The directional components ΓG
µ and hµ

1 versus λ are plotted in
Fig. 4(a), where χ0 = 0.5 and Rxy = 0.8 are assumed as shown
in the figure. We find that ΓG

x <ΓG
y in the region λ < λc(≃ 0.6)

while the relation hx
1 > hy

1 remains unchanged. This observation
indicates that the condition of (i) in Eq. (58) of Appendix D in
the main text is manifest in the range λ <λc. It is also confirmed
that the relation

Γ
G
x hx

1 > Γ
G
y hy

1 (2)

remains unchanged under the λ variation (Fig. 4(b)). The simu-
lated data ΓG

µ and hµ

1 vary abruptly and smoothly, respectively, at
Rxy=1 (Fig. 4(c)), and the relations ΓG

x hx
1>ΓG

y hy
1 and ΓG

x hx
1<ΓG

y hy
1

are exchanged as expected (Fig. 4(d)). This abrupt exchange in
the directional energy component at Rxy = 1 is reflected in the
TP direction, as confirmed by the snapshots in Figs. 4(g)–(f). It
should be noted that the data for model 2 are almost identical to
those for model 1, except for the TP direction. In the models in
R3, the results for sufficiently large κ, such as κ =3, are almost
analogous to those in the models in R2.

It is important to note that the only difference between the
conditions for the data presented in this supplementary material

(Figs. 4(c)– 4(f)) and those in the main text is the value of λ . In
the supplementary material, λ is fixed to λ =1 for the data plotted
in Figs. 4(c),(d), while λ =0.6 for the data in Fig. 13(a),(b) in the
main text. Since the value of λ =0.6 is associated with the equilib-
rium configurations of the models, the configurations obtained at
λ = 1 are considered to be non-equilibrium ones. Consequently,
the observed abrupt change in the TP direction with respect to
the variation of Rxy is considered to be a potential effect of the
non-equilibrium condition, even though the stability condition is
satisfied such that h1 remains unchanged at Rxy close to Rxy = 1
(Fig. 4(d)).
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