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In this supplementary material, a detailed exposition of the numerical data on entropy and surface
tension is presented. Additionally, the mean value of the coefficient of the Gaussian bond potential
is presented.

1 Maximum entropy state and related phe-
nomenons

The maximum entropy state obtained at λ =λc is an equilibrium
state with the distribution probability exp(−H(λ =λc)) for any Rxy

relatively close to Rxy=1. It is anticipated that this state will also
manifest as an equilibrium state in real membranes. In contrast,
a simulated state at λ ̸=λc is not the equilibrium state at λ =λc

because the distribution probability exp(−H(λ ̸=λc)) is different
from exp(−H(λ =λc)). It can thus be concluded that the simu-
lated state at λ ̸=λc is considered to be a non-equilibrium state in
real membranes.

If a membrane for Rxy=1 is immediately stretched to Rxy=0.8,
for instance, then the internal polymer structure will gradually
change to the equilibrium structure at λ =λc(= 0.6). The relax-
ation process in the stretched membrane is time-dependent, and
therefore, cannot be simulated by the standard MC simulations.
Nevertheless, the stretched membrane configuration can be cap-
tured within the canonical MC by fixing the initial λ to λ <0.6.

It is important to note that the ability to describe non-
equilibrium states within the canonical modelling framework is
a consequence of the incorporation of a novel IDOF, designated
as τ⃗, for the polymer structure. In the extended model, time-
dependent phenomena such as relaxation can be described in
terms of an equilibrium configuration by controlling τ⃗. More-
over, the new IDOF enables an accurate representation of energy
localisation resulting from the membrane stretching. The energy
localisation is linked to time-dependent phenomena in Hamilton’s
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Fig. 1 (a) Entropy s(=δS/δAp) vs. Rxy and (b) surface tension σ µ ,(µ=

x,y) vs. Rxy of model 1 in R2 at λ =1 (⃝), λ =0.6 (△) and λ =0.2 (□).
The isotropic σ (△) for λ =0.6 is also plotted. The solid symbol (•) in
(a) represents the results of model 2 at λ =1. (c)–(h) s and σ x of models
1 and 2 in R3 for κ =1 and κ =3. Increasing s, plotted in (c) represents
rubber elasticity. The isotropic σ is also plotted in (f),(g) and (h).

particle dynamics, as evidenced in the case that the potential en-
ergy is dependent on the space variable. Accordingly, an extended
model incorporating a new IDOF is indirectly capable of repre-
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senting time-dependent phenomena, which are non-equilibrium
configurations in statistical mechanical viewpoint. The source
of this intriguing phenomenon can be attributed to the effective
and accurate incorporation of external force-induced interaction
anisotropy into the intensive components of energies, namely,
Γ

G,b
i j (τ) and Du,v

i j (τ) in Eqs. (5) and (6) in the main text.
Now, we plot s and the surface tension σ µ ,(µ = x,y) vs. Rxy,

obtained by fixing λ to λ =1, λ =0.6 and λ =0.2, in Figs. 1(a)–(h),
where σ y is plotted only for models in R2. We observe in Fig. 1(a)
that s decrease with decreasing Rxy. This implies that the entropy
s decreases when the surface extends along the x direction. If
we move to the positive direction along the Rxy axis in the region
of Rxy > 1, we observe that s increases. This does not mean the
rubber elasticity1 because the surface is compressed along the x
direction in this case.

As can be seen from Figs. 1(b), it is clear that σ x(Rxy < 1)>
σ x(Rxy=1), which is consistent with the expectation that the sur-
face tension increases with stretching. We find from Fig. 1(b) that
σ x exhibits a gradual increase when Rxy decreases from Rxy=1 for
all λ ; λ = 0.2 (□), λ = 0.6 (△) and λ = 1 (⃝). In the region of
Rxy >1, the surface shape is oblong along the y direction, where
σ y increases. These responses of σ x and σ y to the stretching are
physically reasonable.

Results of the models in R3 are plotted in Figs. 1(c)–(h), where
λ =1, λ =0.6 and λ =0.2. The behaviours of s and σ x are nearly
analogous to those observed in the models in R2. The entropy is
observed to decrease under the stretching.

The isotropic σ (△) for λ =0.6 is also plotted in Fig. 1 (b). In
the case of models in R2, σ=0 is satisfied when (1/N)∑i j ΓG

i jℓ
2
i j→1

from Eq. (9) in the main text under Nfix =0. This condition σ =

0 is approximately satisfied when the lattice spacing is given by
a=0.525, which can be varied depending on the frame area Ap(∝

a2) in the case of surfaces with a fixed boundary frame. For the
models in R3, the condition for σ =0 is given by (1/N)∑i j ΓG

i jℓ
2
i j→

3/2 from Eq. (66) in Appendix E of the main text. However,
we assume the same value of a=0.525 in the simulations for the
models in R3 independent of κ. For this reason, σ as well as σ x is
negative at Rxy →1 for κ =3 in contrast to the case of the models
in R2. Nevertheless, σ is close to σ x at Rxy→1 as confirmed from
Figs. 1(f)–(h).
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Fig. 2 ΓG
i j vs. Rxy of model 1 in (a) R2 and (b) R3 for κ =3 and κ =1.

The parameter λ is fixed to λ =1 (⃝), λ =0.6 (△) and λ =0.2 (□).

The mean value of ΓG
i j =

1
NB

∑i j ΓG
i j is plotted in Figs. 2(a),(b)

for model 1 in R2 and R3, respectively. Three different values of
λ are assumed for both cases of R2 and R3 as in Fig. 1. We find
that ΓG

i j is almost independent of the lattice deformation by Rxy in

the cases of λ =0.6 (△) and λ =0.2 (□). In the case of λ =1 (⃝),
ΓG

i j is slightly influenced by Rxy in the region far from Rxy=1. It is
also noteworthy that the mean values of the coefficients such as
Γb

i j for the models in R3 and Du,v
i j are almost independent of Rxy.
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