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1 Maximum state and related phe-

nomenons

entropy

The maximum entropy state obtained at A = A, is an equilibrium
state with the distribution probability exp(—H (A =A.)) for any Ry,
relatively close to R,, =1. It is anticipated that this state will also
manifest as an equilibrium state in real membranes. In contrast,
a simulated state at A # A, is not the equilibrium state at A = A,
because the distribution probability exp(—H (A #A.)) is different
from exp(—H(A =A.)). It can thus be concluded that the simu-
lated state at A # A. is considered to be a non-equilibrium state in
real membranes.

If a membrane for R,y =1 is immediately stretched to Ry, =0.8,
for instance, then the internal polymer structure will gradually
change to the equilibrium structure at A =A.(= 0.6). The relax-
ation process in the stretched membrane is time-dependent, and
therefore, cannot be simulated by the standard MC simulations.
Nevertheless, the stretched membrane configuration can be cap-
tured within the canonical MC by fixing the initial A to A <0.6.

It is important to note that the ability to describe non-
equilibrium states within the canonical modelling framework is
a consequence of the incorporation of a novel IDOF, designated
as 7, for the polymer structure. In the extended model, time-
dependent phenomena such as relaxation can be described in
terms of an equilibrium configuration by controlling 7. More-
over, the new IDOF enables an accurate representation of energy
localisation resulting from the membrane stretching. The energy
localisation is linked to time-dependent phenomena in Hamilton’s
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tension is presented. Additionally, the mean value of the coefficient of the Gaussian bond potential

Fig. 1 (a) Entropy s(=85/8A,) vs. Ry, and (b) surface tension o¥, (u=
X,¥) vs. Ry of model 1in R? at A=1 (), A=0.6 (A) and A1 =0.2 (L)
The isotropic o (A) for A=0.6 is also plotted. The solid symbol (e) in
(a) represents the results of model 2 at A=1. (c)—(h) s and 6* of models
1 and 2 in R? for k=1 and k=3. Increasing s, plotted in (c) represents
rubber elasticity. The isotropic ¢ is also plotted in (f),(g) and (h).

particle dynamics, as evidenced in the case that the potential en-
ergy is dependent on the space variable. Accordingly, an extended
model incorporating a new IDOF is indirectly capable of repre-

Journal Name, [year], [vol.], 1 [1



senting time-dependent phenomena, which are non-equilibrium
configurations in statistical mechanical viewpoint. The source
of this intriguing phenomenon can be attributed to the effective
and accurate incorporation of external force-induced interaction
anisotropy into the intensive components of energies, namely,
FiGj’b(r) and D;‘;V(r) in Egs. (5) and (6) in the main text.

Now, we plot s and the surface tension c*, (1 =x,y) vs. Ry,
obtained by fixing A to A=1, A=0.6 and 4 =0.2, in Figs. a)—(h),
where ¢ is plotted only for models in RZ. We observe in Fig. a)
that s decrease with decreasing R,,. This implies that the entropy
s decreases when the surface extends along the x direction. If
we move to the positive direction along the R,, axis in the region
of R,y > 1, we observe that s increases. This does not mean the
rubber elasticityl because the surface is compressed along the x
direction in this case.

As can be seen from Figs. [1|(b), it is clear that 6*(Ry, <1) >
06*(Ryy=1), which is consistent with the expectation that the sur-
face tension increases with stretching. We find from Fig. [Tj(b) that
o* exhibits a gradual increase when Ry, decreases from R,,=1 for
all 2; A=0.2 ([N, A=0.6 (A) and A=1 (). In the region of
R,y > 1, the surface shape is oblong along the y direction, where
o’ increases. These responses of 6* and ¢” to the stretching are
physically reasonable.

Results of the models in R? are plotted in Figs. c)—(h), where
A=1,2=0.6 and A =0.2. The behaviours of s and ¢* are nearly
analogous to those observed in the models in R2. The entropy is
observed to decrease under the stretching.

The isotropic o (A) for A =0.6 is also plotted in Fig. [1| (b). In
the case of models in R?, 6 =0 is satisfied when (1/N)Y; ] Fiijizj% 1
from Eq. (9) in the main text under Ng, =0. This condition ¢ =
0 is approximately satisfied when the lattice spacing is given by
a=0.525, which can be varied depending on the frame area A (<
a?) in the case of surfaces with a fixed boundary frame. For the
models in R, the condition for 6 =0 is given by (1/N)¥;; TG —
3/2 from Eq. (66) in Appendix E of the main text. However,
we assume the same value of ¢ =0.525 in the simulations for the
models in R? independent of k. For this reason, ¢ as well as ¢* is
negative at R, — 1 for k=3 in contrast to the case of the models
in R2. Nevertheless, o is close to ¢~ at Ry, — 1 as confirmed from

Figs. [TD-(h).
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Fig. 2 Fg vs. Ry of model 1 in (a) R? and (b) R? for k=3 and x=1.
The parameter A is fixed to A=1 (), 1=0.6 (A) and A=0.2 (L).

The mean value of ITS: - Li; ¥ is plotted in Figs. a),(b)
for model 1 in R? and R?, respectively. Three different values of
A are assumed for both cases of R? and R? as in Fig. [1} We find
that Fl.Gj is almost independent of the lattice deformation by R, in
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the cases of 1 =0.6 (A) and A =0.2 (). In the case of A =1 (),
E(; is slightly influenced by Ry, in the region far from Ry, =1. It is
also noteworthy that the mean values of the coefficients such as
I7; for the models in R* and D}” are almost independent of Ryy.
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