Soft Matter

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxx

Turing patterns on polymerized membranes: supplementary material (2)

Fumitake Kato,^{*a*} Hiroshi Koibuchi,^{*a**} Elie Bretin,^{*b*} Camille Carvalho,^{*b*} Roland Denis,^{*b*} Simon Masnou,^{*b*} Madoka Nakayama,^{*c*} Sohei Tasaki,^{*d*} and Tetsuya Uchimoto^{*e*,*f*}

Received Date Accepted Date

DOI: 00.0000/xxxxxxxxx

In this supplementary material, a detailed exposition of the numerical data on entropy and surface tension is presented. Additionally, the mean value of the coefficient of the Gaussian bond potential is presented.

1 Maximum entropy state and related phenomenons

The maximum entropy state obtained at $\lambda = \lambda_c$ is an equilibrium state with the distribution probability $\exp(-H(\lambda = \lambda_c))$ for any R_{xy} relatively close to $R_{xy} = 1$. It is anticipated that this state will also manifest as an equilibrium state in real membranes. In contrast, a simulated state at $\lambda \neq \lambda_c$ is not the equilibrium state at $\lambda = \lambda_c$ because the distribution probability $\exp(-H(\lambda \neq \lambda_c))$ is different from $\exp(-H(\lambda = \lambda_c))$. It can thus be concluded that the simulated state at $\lambda \neq \lambda_c$ is considered to be a non-equilibrium state in real membranes.

If a membrane for $R_{xy} = 1$ is immediately stretched to $R_{xy} = 0.8$, for instance, then the internal polymer structure will gradually change to the equilibrium structure at $\lambda = \lambda_c (= 0.6)$. The relaxation process in the stretched membrane is time-dependent, and therefore, cannot be simulated by the standard MC simulations. Nevertheless, the stretched membrane configuration can be captured within the canonical MC by fixing the initial λ to $\lambda < 0.6$.

It is important to note that the ability to describe nonequilibrium states within the canonical modelling framework is a consequence of the incorporation of a novel IDOF, designated as $\vec{\tau}$, for the polymer structure. In the extended model, timedependent phenomena such as relaxation can be described in terms of an equilibrium configuration by controlling $\vec{\tau}$. Moreover, the new IDOF enables an accurate representation of energy localisation resulting from the membrane stretching. The energy localisation is linked to time-dependent phenomena in Hamilton's

Fig. 1 (a) Entropy $s(=\delta S/\delta A_p)$ vs. R_{xy} and (b) surface tension $\sigma^{\mu}, (\mu = x, y)$ vs. R_{xy} of model 1 in \mathbf{R}^2 at $\lambda = 1$ (\bigcirc), $\lambda = 0.6$ (\triangle) and $\lambda = 0.2$ (\square). The isotropic σ (\triangle) for $\lambda = 0.6$ is also plotted. The solid symbol (\bullet) in (a) represents the results of model 2 at $\lambda = 1$. (c)–(h) *s* and σ^x of models 1 and 2 in \mathbf{R}^3 for $\kappa = 1$ and $\kappa = 3$. Increasing *s*, plotted in (c) represents rubber elasticity. The isotropic σ is also plotted in (f),(g) and (h).

particle dynamics, as evidenced in the case that the potential energy is dependent on the space variable. Accordingly, an extended model incorporating a new IDOF is indirectly capable of repre-

^a National Institute of Technology (KOSEN), Ibaraki College, Hitachinaka, Japan, Email: koi-hiro@sendai-nct.ac.jp

^b Institut Camille Jordan (ICJ), CNRS, INSA, Universite Claude Bernard Lyon 1, Villeurbanne, France, E-mail: masnou@math.univ-lyon1.fr

^c Tokyo Medical and Dental University, Japan

^d Department of Mathematics, Hokkaido University, Sapporo, Japan, E-mail: tasaki@math.sci.hokudai.ac.jp

^e Institute of Fluid Science (IFS), Tohoku University, Sendai, Japan

^f ELyTMaX, CNRS-Universite de Lyon-Tohoku University, Sendai, Japan.

senting time-dependent phenomena, which are non-equilibrium configurations in statistical mechanical viewpoint. The source of this intriguing phenomenon can be attributed to the effective and accurate incorporation of external force-induced interaction anisotropy into the intensive components of energies, namely, $\Gamma_{ij}^{G,b}(\tau)$ and $D_{ij}^{u,v}(\tau)$ in Eqs. (5) and (6) in the main text.

Now, we plot *s* and the surface tension σ^{μ} , $(\mu = x, y)$ vs. R_{xy} , obtained by fixing λ to $\lambda = 1$, $\lambda = 0.6$ and $\lambda = 0.2$, in Figs. 1(a)–(h), where σ^{y} is plotted only for models in \mathbb{R}^{2} . We observe in Fig. 1(a) that *s* decrease with decreasing R_{xy} . This implies that the entropy *s* decreases when the surface extends along the *x* direction. If we move to the positive direction along the R_{xy} axis in the region of $R_{xy} > 1$, we observe that *s* increases. This does not mean the rubber elasticity¹ because the surface is compressed along the *x* direction in this case.

As can be seen from Figs. 1(b), it is clear that $\sigma^x(R_{xy} < 1) > \sigma^x(R_{xy} = 1)$, which is consistent with the expectation that the surface tension increases with stretching. We find from Fig. 1(b) that σ^x exhibits a gradual increase when R_{xy} decreases from $R_{xy} = 1$ for all λ ; $\lambda = 0.2$ (\Box), $\lambda = 0.6$ (\triangle) and $\lambda = 1$ (\bigcirc). In the region of $R_{xy} > 1$, the surface shape is oblong along the *y* direction, where σ^y increases. These responses of σ^x and σ^y to the stretching are physically reasonable.

Results of the models in \mathbf{R}^3 are plotted in Figs. 1(c)–(h), where $\lambda = 1$, $\lambda = 0.6$ and $\lambda = 0.2$. The behaviours of *s* and σ^x are nearly analogous to those observed in the models in \mathbf{R}^2 . The entropy is observed to decrease under the stretching.

The isotropic σ (\triangle) for $\lambda = 0.6$ is also plotted in Fig. 1 (b). In the case of models in \mathbb{R}^2 , $\sigma = 0$ is satisfied when $(1/N)\sum_{ij}\Gamma_{ij}^G\ell_{ij}^2 \rightarrow 1$ from Eq. (9) in the main text under $N_{\text{fix}} = 0$. This condition $\sigma =$ 0 is approximately satisfied when the lattice spacing is given by a=0.525, which can be varied depending on the frame area $A_p(\propto a^2)$ in the case of surfaces with a fixed boundary frame. For the models in \mathbb{R}^3 , the condition for $\sigma = 0$ is given by $(1/N)\sum_{ij}\Gamma_{ij}^G\ell_{ij}^2 \rightarrow 3/2$ from Eq. (66) in Appendix E of the main text. However, we assume the same value of a=0.525 in the simulations for the models in \mathbb{R}^3 independent of κ . For this reason, σ as well as σ^x is negative at $R_{xy} \rightarrow 1$ for $\kappa = 3$ in contrast to the case of the models in \mathbb{R}^2 . Nevertheless, σ is close to σ^x at $R_{xy} \rightarrow 1$ as confirmed from Figs. 1(f)–(h).

Fig. 2 $\overline{\Gamma_{ij}^G}$ vs. R_{xy} of model 1 in (a) \mathbf{R}^2 and (b) \mathbf{R}^3 for $\kappa = 3$ and $\kappa = 1$. The parameter λ is fixed to $\lambda = 1$ (\bigcirc), $\lambda = 0.6$ (\triangle) and $\lambda = 0.2$ (\Box).

The mean value of $\overline{\Gamma_{ij}^G} = \frac{1}{N_B} \sum_{ij} \Gamma_{ij}^G$ is plotted in Figs. 2(a),(b) for model 1 in \mathbf{R}^2 and \mathbf{R}^3 , respectively. Three different values of λ are assumed for both cases of \mathbf{R}^2 and \mathbf{R}^3 as in Fig. 1. We find that $\overline{\Gamma_{ij}^G}$ is almost independent of the lattice deformation by R_{xy} in

the cases of $\lambda = 0.6$ (\triangle) and $\lambda = 0.2$ (\Box). In the case of $\lambda = 1$ (\bigcirc), $\overline{\Gamma_{ij}^G}$ is slightly influenced by R_{xy} in the region far from $R_{xy} = 1$. It is also noteworthy that the mean values of the coefficients such as Γ_{ij}^b for the models in \mathbf{R}^3 and $D_{ij}^{u,v}$ are almost independent of R_{xy} .

Acknowledgements

This work is supported in part by Collaborative Research Project J24Ly01 of the Institute of Fluid Science (IFS), Tohoku University. Numerical simulations were performed on the supercomputer system AFI-NITY under the project CL01JUN24 of the Advanced Fluid Information Research Center, Institute of Fluid Science, Tohoku University.

Notes and references

1 P. J. Flory, *Molecular Theory of Rubber Elasticity*, Polymer Journal, Vol. 17, No. l, pp l-12 (1985), https://www.nature.com/articles/pj19851.pdf.