Supplementary Information

Shear-induced Dynamics of an Active Belousov-Zhabotinsky Droplet

Shreyas A. Shenoy,^a Chaithanya KVS,^{a,b} and Pratyush Dayal*^a

^aPolymer Engineering Research Lab (PERL), Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India - 382355.

^bPressent address: School of Life Sciences, University of Dundee, Dundee, UK – DD1 4HN.

*Email: pdayal@iitgn.ac.in

S1. Synchronous oscillations in concentration C_1 and droplet's swimming speed V_d

Figure S1.: Time evolution of droplet's swimming speed V_d and concentration c_1 in the presence of shear flow of strength $V_w = 0.005_{\text{at}} (a)\Delta \kappa = 0.3$ and (b) $\Delta \kappa = -0.3$

Figure S2: Trajectories of a passive droplet ($\Delta \kappa = 0$) placed initially at the channel centre at varying shear flow strengths

S2. Trajectories of a passive droplet at varying shear flow strengths

S3. Movie-1

The movie shows the motion of active BZ droplet ($\Delta \kappa = 0$) in the channel subjected to a shear flow of strength $V_w = 0.005$. The velocity field shown is in droplet's frame.

S4. Movie-2

The movie shows the motion of active BZ droplet ($\Delta \kappa = 0.3$) in the channel subjected to a shear flow of strength $V_w = 0.005$. The velocity field shown is in droplet's frame.

S5. Movie-3

The movie shows the motion of active BZ droplet ($\Delta \kappa = 0.3$) in the channel subjected to a shear flow of strength $V_w = 0.020$. The velocity field shown is in droplet's frame.

S6. Movie-4

The movie shows the motion of active BZ droplet ($\Delta \kappa = -0.3$) in the channel subjected to a shear flow of strength $V_w = 0.005$. The velocity field shown is in droplet's frame.

S7. Movie-5

The movie shows the motion of active BZ droplet ($\Delta \kappa = -0.3$) in the channel subjected to a shear flow of strength $V_w = 0.020$. The velocity field shown is in droplet's frame.