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Table S1. Elemental surface composition of silica nanoparticles with different surface 
chemistries, obtained by XPS.  

Sample B1s C1s N1s O1s Si2p P2p Br3d N/P ratio 

SiNP–Br – 48.36 8.74 20.63 13.79 – 8.48 – 

SiNP–PMPC – 59.23 5.69 29.44 – 5.12 0.52 1.08 

SiNP–APBA 0.29 59.46 5.77 29.28 – 5.20 – 1.11 
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Fig. S4. Characterization of surface modified silica nanoparticles. (A) FTIR spectra of –Br 
(black), –PMPC (blue), and –APBA (red) samples showing characteristic vibrations of 
functional groups present in each. (B) Fluorescence emission spectra of –PMPC and –APBA 
samples demonstrating the appearance of a fluorescent species only after conjugation of ARS 
with the boronic acid. 
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Analysis of light scattering data 
Dynamic light scattering (DLS) measures the change in light scattering intensity due to the 
Brownian motion of particles in a solution and relates it to particle size. As particles move, they 
scatter light at different intensities over time, and this fluctuation can be analyzed to determine 
particle size. 
The diffusion coefficient (D) is obtained from the time correlation function, which reflects the 
speed at which the particles move in the solvent. Then, the hydrodynamic diameter (Dh) is 
related to the diffusion coefficient through the Stokes-Einstein equation as:  𝐷

ℎ
= 𝑘

𝐵
𝑇/3𝐷

From this equation, it is determined that the diffusion coefficient is inversely proportional to the 
hydrodynamic diameter. Therefore, larger particles diffuse more slowly (smaller D), while 
smaller particles diffuse faster (larger D). [1] 

From this perspective, we focused our analysis for Fig. 6 on the change in hydrodynamic 
diameter due to changes in particle diffusion caused by the interaction with mucin in the 
medium. 
Particle random Brownian motion causes a fluctuation in the intensity of scattered light as a 
function of time. The correlator then constructs a correlation function (G) of the scattered 
intensity, which is an exponential decaying function.[2] For a monodisperse sample, the 
correlation function is:  𝐺(τ) = 𝐴[1 + 𝐵𝑒𝑥𝑝(− 2Γτ)]

Where  is the time difference of the correlator, A is the baseline, and B is the intercept of the τ
correlation function. Additionally, , where D is the translational diffusion coefficient and Γ = 𝐷𝑞2

 where n is the refractive index of the dispersant, is the laser wavelength 𝑞 = (4π𝑛/λ
𝑜
)𝑠𝑖𝑛(θ/2) λ

𝑜
 

and  the scattering angle. θ
For polydisperse samples, the equation for the correlation function includes the sum of all 
exponential decays , then we can write:  𝑔

1
(τ) 𝐺(τ) = 𝐴[1 + 𝐵𝑔

1
(τ)2]

The correlation functions and the corresponding DLS curves of SiNP–APBA at different pH 
values and different sialic acid:end group ratios are presented in Fig. S6. Particle size is obtained 
from the correlation function by fitting an exponential to it so as to obtain the z-average diameter 
and estimate the polydispersity. The plot obtained is the relative intensity of light scattered by 
particles and represented as the intensity size distribution. 

 

 

[1] F. Babick, In Micro and Nano Technologies: Characterization of Nanoparticles, Chapter 3.2.1 
- Dynamic light scattering (DLS), Elsevier, 2020, 137–172 

[2] E. Sutherland, S.M. Mercer, M. Everist and D.G. Leaist, J. Chem. Eng. Data, 2009, 54, 2, 
272–278 
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Fig. S5. Hydrodynamic diameter and polydispersity of SiNP–PMPC samples at different mucin 
concentrations and pH values at a SA:EG ratio of 1:1. The solid horizontal dark gray line 
represents the original dimensions of the particles in DI water (i.e., prior to incubation). 
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Fig. S6. Dynamic light scattering data of SiNP–APBA samples for different sialic acid:end 
group (SA:EG) ratios, and at pH 3.0 (A, B), 5.4 (C, D), and 7.4 (F, G). The shape of the 
correlation functions confirm the unimodal distribution of their corresponding hydrodynamic 
diameter curves. Moreover, the slower decay of the correlation function observed at pH 3.0 with 
decreasing SA:EG ratio confirms an increasingly more favorable interaction between mucin and 
the nanoparticle surface. 
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