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SI.A. Scanning electron microscopy images

As shown on SEM image on Figure SI.1, the NaCl crystals in the template have random 

orientations and pores between them. The air is replaced by a PDMS-Fe mixture under 

vacuum.

Figure SI. 1 – SEM of a fractured surface of a NaCl pellet template obtained at compaction 
pressure equal to 450 MPa.
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Additional images of the internal structure of the foam F82.7-H6 are given on Figure SI.2. The 
images at low magnification show the irregular shapes of pore walls and openings between 
pores. The images at high magnification show the CIP distribution inside the matrix. The 
particles are slightly aggregated in clusters of variable shape without preferential orientation.

 

 

Figure SI. 2 – SEM images of the sample F82.7-H6 at low (a, b) and high (c, d) magnifications. 
The same zone of the sample was images using secondary electrons (a and c) or backscattered 
electrons (b and d).
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SI.B. Magnetic measurements and computations

As shown in Figure SI.3, the saturation magnetization and mass susceptibility increase linearly 

with CIP mass fraction. This is expected for weakly interacting particles at low volume 

fractions.

Figure SI. 3 – Saturation magnetization (a) and mass susceptibility (b) of magnetic PDMS 
samples (foams and non-porous samples) as a function of the mass fraction of CIP. The data in 
orange corresponds to a 37.8 %wt dispersion of CIP in inert hydrocarbon matrix (eicosane).
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The magnetic force between the sample and the magnet was measured using the Instron 

tensile testing machine with a sample laying on a hollow clamp with a flat surface connected 

to the force sensor and a magnet fixed under the sample. The curves of the force as a function 

of the distance z between the upper surface of the magnet and the lower surface of the foam 

are shown on the Figure SI.4 (a, b). The shape of curves is very similar for all samples showing 

the decrease of the force with the distance. The higher attraction force for samples with lower 

porosity and large height is explained by higher iron mass in the sample. As consequence of 

the decrease of the force, the total height change ΔHmag and total strain ΔHmag/Hinitial also 

decrease with the distance z as represented on Figure SI.4 (c and d). 

Figure SI. 4 – Magnetic force (a, b), total height change (c) and total strain for magnetic foams 
as a function of the distance between magnetic foam and a permanent magnet.
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To select a magnet with most homogeneous distribution of the field in plane, we simulated 

the distribution of the vertical component of the field Hz around cylindrical magnets with fixed 

length Lmag = 20 mm and different diameters (Figure SI.5a) using an open source package 

Magpylib1 implicated in Python. The curves on Figure SI.5b demonstrate that the optimum 

diameters corresponding to a sample with diameter of 13 mm are ranging from 15 to 20 mm. 

In the rest of the work, we choose the S20-20-N magnet from Supermagnete with diameter 

of 20 mm. Figures SI.5c and d show the spatial distribution, respectively, vertical and 

horizontal components of the field as a function of z and x coordinates.

Figure SI. 5 – Simulated distribution of the magnetic field H near a cylindrical magnet (Brem = 
1.29 T) with fixed height Lmag = 20 mm: a) the sketch of the magnet; b) effect of the magnet 
diameter Dmag on the horizontal distribution of vertical field component Hz; c) dependence of 
the vertical component Hz on the coordinate z for different distances x from central axis of the 
magnet S20-20-N with Dmag = 20 mm; d) dependence of the horizontal component Hx on the 
coordinate z for different distances x from central axis of the magnet S20-20-N with Dmag = 20 
mm.

The experimental values of Hz on the vertical axis of the magnet S20-20-N were measured with 

a MFM 3500 gaussmeter from PCE Iberica and showed a very good agreement with the 

computations (Figure SI.5).
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 Figure SI. 6 – Distribution of the vertical component of magnetic field Hz at the central axis 
of the magnet S20-20-N as a function of the distance to the magnet surface.
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SI.C. Samples’ dimensions, porosities, mechanical and magnetic properties.

The following table gives the names of fabricated samples, the values of salt template relative 

densities , the final geometrical porosities Φ, as well as elastic compression moduli 𝜌𝑝𝑒𝑙𝑙𝑒𝑡 𝜌𝑁𝑎𝐶𝑙

E and calculated magnetic susceptibilities χ.

Table SI.1.

Sample Hinitial (mm) 𝜌𝑝𝑒𝑙𝑙𝑒𝑡 𝜌𝑁𝑎𝐶𝑙 Φ § E (kPa) χ 

(dimensionless)

F82-H4 3.97 79.9 81.7 8.33 0.104‡

F82-H6 5.95 82.7 82.1 7.78 0.102‡

F82-H8 8.31 82.2 81.7 8.22 0.104‡

F84-H4 4.04 83.5 84.0 5.94 0.091‡

F84-H6 5.85 84.8 84.4 5.31 0.089‡

F84-H8 7.39 85.7 84.3 4.78 0.0896‡

F87-H4 3.74 87.3 87.0 3.17 0.074‡

F87-H6 5.62 86.5 85.9 3.93 0.080‡

F87-H8 7.96 87.4 87.2 3.15 0.073‡

PDMS-Fe - non-porous non-porous 775 kPa 0.481

§ - porosity calculated from mass (ms), volume (Vs) of the sample using equation  where Φ = 𝑚𝑠 (𝑉𝑠 ∙ 𝜌𝑃𝐷𝑀𝑆 ‒ 𝐹𝑒)

ρPDMS-Fe = 1767 kg/m3 is the theoretical density of the matrix.

‡ - volumetric magnetic susceptibility calculated from the mass susceptibility of foams χg = 0.0002723 m3/kg and 

porosity using equation: 𝜒 = 𝜒𝑔 ∙ 𝜌𝑃𝐷𝑀𝑆 ‒ 𝐹𝑒 ∙ (1 ‒ Φ)
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SI.D. Analytical modelling of magnet-foam interactions

The magnetic field  along the axis of a cylindrical magnet with remanent magnetization 𝐻(𝑧)

Brem (in units of Tesla) and dimensions Lmag and Rmag can be described by equation:

𝐻(𝑧) =
𝐵𝑟𝑒𝑚

2𝜇0 ( 𝑧 + 𝐿𝑚𝑎𝑔

(𝑧 + 𝐿𝑚𝑎𝑔)2 + 𝑅 2
𝑚𝑎𝑔

‒
𝑧

𝑧2 + 𝑅 2
𝑚𝑎𝑔

)          (𝑆𝐼.1)

Close to the magnet, the field can be considered as linear function of the distance:

𝐻(𝑧) ≈
𝐵𝑟𝑒𝑚

2𝜇0 ( 1

1 + (𝑅𝑚𝑎𝑔

𝐿𝑚𝑎𝑔
)2

‒
𝑧

𝑅𝑚𝑎𝑔) =
𝐵𝑟𝑒𝑚

2𝜇0
(𝑏 ‒ 𝑎𝑧)          (𝑆𝐼.2)

Where coefficients are a = 1/Rmag and . In this case, the slope of the 
𝑏 = [1 + (𝑅𝑚𝑎𝑔

𝐿𝑚𝑎𝑔
)2] ‒ 0.5

magnetic field is a constant:

𝑔𝑟𝑎𝑑𝐻(𝑧) =‒
𝑎𝐵𝑟𝑒𝑚

2𝜇0
    (𝑆𝐼.3)

The attraction body force fmag (in N/m3) that acts on a material with magnetic susceptibility χ 

may be approximated as:

|𝑓𝑚𝑎𝑔| ≈ 𝜇0𝜒𝐻𝑧 ∙
𝑑𝐻𝑧

𝑑𝑧
≈

𝑎𝜒𝐵 2
𝑟𝑒𝑚

4𝜇0
(𝑏 ‒ 𝑎𝑧)   (𝑆𝐼.4)    

equilibrium equation for the deformed configuration:

𝑑𝜎 = 𝑓𝑚𝑎𝑔𝑑𝑧

With limit conditions: σ (z=Hinitial) = 0; u (z=0) = 0.

In assumption of small deformations ΔHmag<<Hinitial, the integration may be done in the 

reference configuration:

𝜎(𝑧) ≈
𝑎𝜒𝐵 2

𝑟𝑒𝑚

4𝜇0

𝑧

∫
0

(𝑏 ‒ 𝑎𝑧) 𝑑𝑧 =
𝑎𝜒𝐵 2

𝑟𝑒𝑚

8𝜇0
𝑧(2𝑏 ‒ 𝑎𝑧) + 𝐶𝑜𝑛𝑠𝑡

𝜎(𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 0
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𝐶𝑜𝑛𝑠𝑡 = 𝜎(0) =  ‒
𝑎𝜒𝐵 2

𝑟𝑒𝑚

8𝜇0
𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙(2𝑏 ‒ 𝑎𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

𝜎(𝑧) =
𝑎𝜒𝐵 2

𝑟𝑒𝑚

8𝜇0
(𝑧 ‒ 𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙)(2𝑏 ‒ 𝑎(𝑧 + 𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙))

If we apply a linear elastic behavior (Hookes’s law in compression):

𝜎(𝑧) = 𝐸𝜀(𝑧)

The height change may be obtained by integrating the strain along the sample:

∆𝐻𝑚𝑎𝑔 =

𝐻0

∫
0

𝜀(𝑧)𝑑𝑧 =
𝑎𝜒𝐵 2

𝑟𝑒𝑚

8𝐸𝜇0
𝐻 2

𝑖𝑛𝑖𝑡𝑖𝑎𝑙(2𝑎
3

𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ‒ 𝑏) (𝑆𝐼.5)

SI.E. Numerical modeling for large strains

In the numerical model, we consider a finite-strain continuum formulation of the problem, 

which is governed by the balance of linear momentum. As there is negligible Poisson’s effect, 

we may parameterize the motion of the foam by the position  of a material point, where 𝑧 ∈ Ω

 is the domain occupied by the foam in the current configuration. In general, we seek to Ω ⊂ 𝑅1

determine the mapping  which is a one-to-one function that captures the motion  of 𝑧 = 𝜁(𝑍), 𝜁

a material point initially at  of the reference domain to its current position . Meanwhile, 𝑍 ∈ Ω0 𝑧

the stretch ratio  represents the deformation of line elements between  and . In 𝜆 = ∂𝜁∂𝑍 Ω0 Ω

1D, the balance of linear momentum is written:

∫
Ω

(∂𝜎
∂𝑧

+ 𝑏(𝑧))𝑑𝑧 = 0    (𝑆𝐼. 6)

Where  is the Cauchy stress and  is the body force per unit volume. In this problem, 𝜎(𝑧) 𝑏(𝑧)

we may determine the body force as the equivalent force per unit volume that is acting on the 

foam due to the applied magnetic field. The magnitude of this force in 1D is written:
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𝑏(𝑧) = 𝜇0𝜒𝐹𝑒𝜌𝐹𝑒(𝑧)𝐻(𝑧)
∂𝐻
∂𝑧

 (𝑆𝐼. 7)

Where  is the mass density of iron particles,  is the permittivity of free space, and   𝜌𝐹𝑒(𝑧) 𝜇0 𝜒𝐹𝑒

is the magnetic susceptibility (a property of the magnetic particles). In the numerical model, 

we use the exact representation of the magnetic field  given in Eq. SI 1. Note that while 𝐻(𝑧)

the cylinder deforms, the density of iron particles increases according to the change in volume 

 of the material point. Assuming that there is no Poisson’s effect, the current density field 𝐽(𝑧)

may be written in terms of the original density field  as:𝜌𝐹𝑒
0 (𝑧)

𝜌𝐹𝑒(𝑧) =
1
𝜆

𝜌𝐹𝑒
0 (𝑧)  (𝑆𝐼. 8)

In practice, we assume that the original density field  is constant across the sample. The 𝜌0

typical value of this quantity is 100-200  in our foams. Finally, to complete the numerical 𝑘𝑔 𝑚 ‒ 3

model, we must propose a constitutive equation that links the deformation field to the stress 

field. As a first order approximation, we consider a simple linear elastic law:

𝜎(𝑧) = 𝐸𝜖(𝑧),     𝑤𝑖𝑡ℎ      𝜖(𝑧) =
1
2

‒
1

4𝜆2
   (𝑆𝐼. 9)

Here,  is the Euler-Almansi strain. To solve this system, we consider an Eulerian 𝜖(𝑧)

discretization of the domain  and solve Eq. SI.6 using the Finite Element Method in the weak Ω

form interface of COMSOL Multiphysics. Thus, we consider the localized balance equation and 

derive the weak form of Eq. SI.6 as:

∫
Ω

(∂(𝛿𝑧)
∂𝑧

𝜎(𝑧) ‒ (𝛿𝑧)𝑏(𝑧))𝑑𝑧 = 0   (𝑆𝐼. 10)
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Here,  are the test functions, which represent virtual displacements of . To obtain 𝛿𝑧 𝑧

consistent boundary conditions, we ramp the magnetization constant  from 0 to its true value 𝜒

over a finite time interval and solve Eq. SI.10 iteratively while neglecting inertial effects. After 

the simulation is complete, the final stress field  and stretch field  may be obtained by 𝜎(𝑧) 𝜆(𝑧)

post-processing at the final timestep.

SE.F. Strain distribution

As shown in Figure SI.6, the numerical model better predicts the experimentally observed local 

strain in the sample as compared to its analytical counterpart. This leads to the overestimation 

of the total strain by the analytical model.

Figure SI. 7 - The predicted and experimental strain distribution inside the foam F84-H8 in its 
deformed state as a function of the vertical coordinate



13

SI.F. Adhesive and elastic properties of Sylgard184-Sylgard 527 mixtures.

The adhesive properties of the cured soft PDMS were characterized using a probe-tack test 

with a plane-plane geometry of diameter of 23 mm. The pull-off curves are represented in 

Figure SI.7. The failure was cohesive for S527 sample and adhesive for all other compositions. 

For the adhesion tests, we selected the composition 10%S184-90%S527 with a maximum tack 

stress  and the adhesion energy (integral of the pull-off curve) of 3 J 𝜎𝑡𝑎𝑐𝑘 ≈ 4𝑁 (23𝑚𝑚)2 ≈ 8 𝑘𝑃𝑎

m-2. The mixture of two Sylgard grades at 25%S184-75%S527 weight ratio was used to make 

a sufficiently soft but not too sticky PDMS matrix (such as Sylgard 527). 

Figure SI. 8 – Pull-off curves of Sylgard 184 and Sylgard 527 mixtures for different mixing 
ratios

Figure SI. 9 – Compression modulus and adhesion energies as a function of Sylgard 184 and 
Sylgard 527 as a function of Sylgard 184 content.
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