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S1 Estimate of linear response regime in simulation:

As mentioned in the main text, to measure the response under single-step perturbation in the
simulation, we monitor the evolution of the stress σ(t) just after the application of the perturbation.

From this we calculate instantaneous modulus, δσ(t)/δγ = σ(t)−σ(0)
γ1−γ0

and we have plotted the

modulus in Fig. S1(a). The evolution of the modulus seem to overlap with each other for a step strain
(γ1) of 0.2% or below; beyond this point, the curves deviate, indicating the onset of nonlinearity.

In Fig. S1(b), we have shown instantaneous modulus for two different step strain γ1: one in the
linear regime (γ1 = 0.2%) and the other beyond the linear regime (γ1 = 0.5%). Similar to what we
have observed in experiments, both the curves can be fitted nicely with the same double logarithmic

functional form: δσ(t)
δγ = a+ b log(t) + c log(t+ t0) where a = 0.03989, b = −0.01886, c = 0.01436,

t0 = 17.2831 for γ1 = 0.2% and a = 0.03987, b = −0.01977, c = 0.01483, t0 = 21 for γ1 = 0.5%.
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Figure S1: (a) Evolution of the instantaneous modulus δσ(t)
δγ for a range of single step perturbation

γ1 = 0.1% − 10% indicates the linear regime in simulation. In the inset we show the zoomed in
version of the relaxation curves (0.1% and 0.2%) at longer time scales. (b) Instantaneous modulus

for single-step perturbation is fitted with double logarithmic δσ(t)
δγ = a+ b log(t)+ c log(t+ t0) form

in both the linear (γ1 = 0.2) and non-linear (γ1 = 0.5) regime (fitting parameters are described in
the text).

S2 Measurement of the peak time deviation:

To measure the deviation of the peak time ∆tp from LRT prediction, in both experiments and
simulations, we determine the experimental peak time tEp and the simulated peak time tSp from each

of the two-step measurements. We have also predicted the peak time tPp using the linear response
theorem in the context of two step strain protocol. Finally we define ∆tp as the normalized difference

between these two: ∆tp =
|tPp −tEp |
tEp +tPp

in experiments, and ∆tp =
|tPp −tSp |
tSp+tPp

in the case of simulations.
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Figure S2: (a) and (b) showing the peak time deviations ∆tp for γ1 = 5% and γ1 = 50% respectively.
The shaded regions where tEp are absent.

We have shown this quantity ∆tp in Fig.3-4 of the main text. Here in Fig. S2(a) and (b) we
show the deviation of the peak time (∆tp), measured in experiments, for γ1 = 5% and γ1 = 50%
respectively. Please note that the δγ2/γ1 range is not the same for γ1 = 5% and γ1 = 50% and we
discuss this in detail in the next section.

S3 Absence of peak in the stress response for for larger tw
and δγ2:

As both tw and δγ2/γ1 increases, the parameter space over which we can reliably obtain the peak,
gets smaller. The stress response for large tw and large δγ2/γ1 gets flatter and it becomes progres-
sively difficult to locate the peak and extract the peak position. This is the reason why the δγ2/γ1
range is not the same for γ1 = 5% and γ1 = 50%, as shown in Fig. S2(a) and (b).
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Figure S3: a typical example from experiment where (a) tp is present (b) tp is absent. (c) with
increasing tw getting tp becomes harder (data shown for the fixed γ1 = 5% and γ2 = 2%). (d) For
the fixed γ1 = 5% and tw getting tp of increasing δγ2/γ1 becomes difficult.
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In Fig. S3(a) (for γ1 = 10%, γ2 = 6% and tw = 25s), we show a typical non-monotonic stress
response from the experiment, from which the peak position tp can be identified very easily whereas,
for Fig. S3(b) (for γ1 = 5%, γ2 = 2% and tw = 50s), there is no clear peak in the stress response. In
Fig. S3(c) it has been demonstrated ( γ1 = 5% and γ2 = 2%), that with increasing waiting time tw
it becomes harder to identify a clear peak and the corresponding peak time. Similarly in Fig. S3(d)
we show, for γ1 (5%) and tw (50s), the typical stress responses when δγ2/γ1 increases.

S4 Measurement of the non-affinity in the experiment:

To calculate the non-affinity, we first measure the experimental velocity field vE(x, y) and look at
the absolute value of the normalised x-component velocity (where x is the shear direction):

vE(x, y) =

∣∣∣∣vEx (x, y)vmax

∣∣∣∣
where, vmax represents the maximum value of the x-component of vE(x, y). The experimental
velocity field is averaged over different grid points along x-axis at two extremes of the profile, i.e.
at y = d and y = 0, yielding ⟨vE(d)⟩x and ⟨vE(0)⟩x, respectively. Using these mean values, an
affine flow field can be computed as:

vA(x, y) =

[
⟨vE(d)⟩x − ⟨vE(0)⟩x

d

]
y + ⟨vE(0)⟩x.

Note that by construction vA(x, y) depends only on y. Using the experimentally obtained velocity
field vE(x, y) and the corresponding affine velocity field vA(x, y), we define a measure of non-affinity
as:

∆(x, y) =

∣∣vA(x, y)− vE(x, y)
∣∣

vA(x, y) + vE(x, y)

where the denominator acts as a normalization constant. Non-affinity maps ∆(x, y) for γ1 = 5%
and γ1 = 50% are shown in Fig. S4.1 (a) and (b) respectively.
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Figure S4.1: The non-affinity map ∆(x, y) for (a) γ1 = 5% and (b) γ1 = 50% respectively, where x
is the shear direction and y is the shear gradient direction.
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Figure S4.2: The schematic of the imaging setup is shown in Fig.(a), where d represents the width
of the sample at the boundary. Fig.(b) presents a typical captured image. By analyzing two
such images taken during perturbations and using Particle Image Velocimetry (PIV), we compute
the matrix vE(x, y) which is depicted in Fig.(c). The corresponding affine flow field of the same
dimensions, vA(x, y) is shown in Fig.(d). Finally, Fig. (e) illustrates the non-affinity map ∆(x, y)
obtained by using the vE(x, y) matrix and the corresponding affine matrix vA(x, y).

The Fig. S4.2 presents the schematic of the experimental setup along with a pictorial represen-
tation of the procedure used to measure the non-affinity map ∆(x, y).

In our experiments, the size of the grid determines the spatial resolution of velocity mapping.
Here, we have chosen the grid size such that each grid is large enough to have a sufficient number
of speckles, but significantly small compared to the size of the image to have good enough spatial
resolution. In our setup, the size of the tracer particles (∼ 3.34µm) and the grid size (0.02mm ×
0.02mm) is much larger than the size of the individual PNIPAM particles (∼ 0.97µm). Thus,
experimentally we cannot probe the particle scale displacements, unlike in simulations.



S5 Dependence of peak height on the waiting time:
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In the figure (a) and (b), peak height with waiting time is plotted
The figure (a) is the experiment figure 
and (b) is the simulation figure.
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Figure S5: The Fig.(a) shows the cartoon of how we define the peak stress σp and the starting stress
value σ1 in the second interval. The Fig.(b) and (c) show the dependence of the peak height with
waiting time for (b) γ1 = 5% in the case of experiment and (c) γ1 = 0.1% in the case of simulation
respectively. Three different plots in each case are for different γ2 values.

We define the peak height in both cases as (σp − σ1), where σp is the peak stress value in the
second interval, and σ1 is the stress value at the start of the second interval response. In the case
of the experiment, σ1 corresponds to the stress value at t = tw + 1 s, while in the simulation, it
corresponds to the stress value at t = tw + 0.1. To examine the dependence of peak height on
waiting time, we plot (σp − σ1) vs. tw in: Fig. S5 (b) for the experiment (γ1 = 5%, with three
different γ2), and Fig. S5 (c) for the simulation (γ1 = 0.1%, with three different γ2). In all cases,
the peak height initially increases with waiting time and then saturates, consistent with the trend
observed in Reference [21] in the main text.

S6 Measurement of the mean deviation of the peak time:

For a given first-step perturbation γ1, we consider multiple second-step perturbations δγ2 = (γ1 −
γ2). For each combination of γ1 and γ2, a wide range of waiting times is explored in both experiment
and simulation. This allows us to calculate the peak time deviation in the second interval relative
to the Linear Response Theory (LRT) prediction for all possible parameter combinations. Fig. S6
presents representative examples of these parameter combinations. In the main text, the mean peak
time deviation ∆̄tp for a given γ1 accounts for all these parameter regimes.
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Figure S6: The second interval stress response for various perturbation regimes is compared with the
Linear Response Theory (LRT) prediction for both experiment (top panel) and simulation (bottom
panel). Experiment (top panel): (a) For a smaller perturbation of γ1 = 5%, two secondary
strains, γ2 = 4.5% and γ2 = 3.5% are selected. (b) For a larger perturbation of γ1 = 20%, two
secondary strains, γ2 = 19% and γ2 = 16% are chosen. In both cases, stress responses are plotted
for two waiting times, tw = 25s and tw = 50s. Symbols represent experimental data points, while
the solid red lines show the LRT predictions. Simulation (bottom panel): (c) For a smaller
strain of γ1 = 0.1%, two secondary strains, γ2 = 0.09% and γ2 = 0.05% are considered. (d) For a
larger strain of γ1 = 5%, two secondary strains, γ2 = 4.5% and γ2 = 2.5% are chosen. In both cases,
stress responses are plotted for two waiting times, tw = 30s and tw = 100s. Solid lines represent
the simulated data, while dashed red lines indicate the LRT predictions.
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