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Supplementary Text 

Materials 

Unless otherwise specified, the chemicals used in the current work were purchased from Sigma-

Aldrich and used without further purification. For the hydrogels used in the mechano-diffusion 

experiments, the following materials were used: acrylamide (AAm; Sigma-Aldrich A8887), N, 

N’-methylenebisacrylamide (MBAA; Sigma-Aldrich 146072), ammonium persulfate (APS; 

Sigma-Aldrich A3678), N, N, N’, N’-tetramethylethylenediamine (TEMED; Sigma-Aldrich 

T9281), lithium chloride (LiCl; Sigma-Aldrich L9650). The following materials were used in 

mechano-diffusion experiments under different stress states: acrylic plates (McMaster-Carr), 

acetic acid (Sigma-Aldrich A6283), 3-(trimethoxysilyl)propyl methacrylate (TMSPMA; Sigma-

Aldrich 440159), microscope cover glass (Fisherbrand, Superfrost Plus), and cover glass 

(Corning). For the gold nanoparticles (AuNPs) synthesis, the following materials were used:  

deionized water (DI water; Ward’s Science 470300-966), gold (III) chloride trihydrate (HAuCl4 · 

3H2O; Sigma-Aldrich 520918), tri-sodium citrate (Sigma-Aldrich S1804) used as stabilization 

agent, and sodium borohydride (NaBH4; Sigma-Aldrich 452882),  methoxypoly (ethylene glycol) 

1000-thiol (MPEG1000-SH; Nanosoft Biotechnology SKU 2514-1000), and centrifugal filters 

(The Amicon Ultra 4 Ultracel 30 kDa molecular weight cutoff; Merck Millipore Ltd.). 

Synthesis of functionalized AuNPs 

To synthesize AuNPs with precise control over their core and hydrodynamic diameters, we 

followed a modified protocol 1, 2. Two kinds of AuNPs with core diameters of 6 nm and 18 nm are 

synthesized.  

Specifically, for the AuNPs with 6 nm core diameter, a mixture of 20 mL DI water, 0.25 mM 

HAuCl4, and 0.25 mM tri-sodium citrate was stirred magnetically at 650 rpm for 15 minutes (Fig. 

S2). Concurrently, we added 600 μL of ice-cold 0.1 M NaBH4 solution into the mixture, which 

instantly transformed the initially colorless solution into a vivid red hue. The mixture was left 

undisturbed for 1 hour to allow the solution to reach the reaction 3. To enhance the compatibility 

between the hydrophobic AuNPs and the hydrophilic hydrogel, the AuNPs’ surfaces were 

functionalized with thiol-terminated PEG chains. Specifically, 50 mg of MPEG1000-SH was 

dissolved in 500 μL of DI water and then added dropwise to the 20 mL AuNPs solution while 

stirring at 650 rpm, resulting in a solution with deeper color. Subsequently, the mixture was stirred 

for 1 hour to ensure a thorough ligand exchange. The solution was then allowed to stand for 1 hour 

to stabilize. Afterward, 4 mL of the solution was transferred to a centrifugal filter and centrifuged 

at 4000 rpm for 10 minutes to eliminate any residual reagents. This centrifugation process was 

repeated three times, each time with the addition of 4 mL of DI water. After the final centrifugation, 

the concentrated AuNPs solution exhibited a dark purple color 4. 

For the AuNPs with 18 nm core diameter, a mixture of 20 mL DI water and 0.25 mM HAuCl4 was 

stirred magnetically at 650 rpm on the hot plate (Fig. S3). The hotplate was set at a heating 

temperature of 180 °C to heat the HAuCl4 solution. When the HAuCl4 solution was boiling, 2 mL 

of 1% wt. Tri-sodium citrate aqueous solution was slowly added in, and the boiling was continued. 

The color of the solution first turned light purple and then changed to ruby red after further boiling, 

indicating the formation of AuNPs. The heating continued for an extra 10 min. The AuNPs solution 

was cooled down to room temperature. After the cooling process, to enhance the compatibility 

between the hydrophobic AuNPs and the hydrophilic hydrogel, the AuNPs’ surfaces were 

functionalized with thiol-terminated PEG chains. Specifically, 50 mg of MPEG1000-SH was 

dissolved in 500 μL of DI water and then added dropwise to the 20 mL AuNPs solution while 
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stirring at 650 rpm, resulting in a solution with deeper color. Subsequently, the mixture was stirred 

for 1 hour to ensure a thorough ligand exchange. The solution was then allowed to stand for 1 hour 

to stabilize. Afterward, this 18 nm AuNPs solution was centrifuged in the same way as that for the 

6 nm AuNPs solution. 

Structural characterization of AuNPs 

The core diameter and hydrodynamic diameter of the AuNPs were characterized by transmission 

electron microscopy (TEM) imaging and dynamic light scattering (DLS), respectively. 

Specifically, the TEM imaging was carried out using the JEOL 1400 Flash TEM equipment with 

a maximum accelerating voltage of 120 kV and a lattice resolution of 0.2 nm; and the DLS was 

performed using the Malvern Zetasizer Nano-ZS equipment. Given the measured distributions of 

AuNPs’ core diameter and hydrodynamic diameter, we can identify the mean values of core 

diameter and hydrodynamic diameter of the two kinds of AuNPs as 𝑑𝑐 = 6 nm and 18 nm (Fig. 

S2c, Fig. S3c) and 𝑑ℎ = 12 nm and 28 nm (Fig. S2d, Fig. S3d), respectively.  

Zeta potential measurement of AuNPs 

The zeta potential measurement of the aqueous AuNPs solution was performed by the Malvern 

Zetasizer Nano-ZS equipment by laser Doppler microelectrophoresis method, using disposable 

cuvettes with a capillary channel. Both the zeta potential of the AuNPs with 6 nm and 18 nm core 

diameters were measured (Fig. S4). The results show that the conductivities of the solution are 

0.335 mS/cm and 0.339 mS/cm. The measured electrophoretic mobilities of the AuNPs with 6 nm 

core diameter and 18 nm core diameter are -0.07531 μm·cm/V·s and -0.07977 μm·cm/V·s, 

respectively. By applying Henry’s equation and Smoluchowski approximation 5, the zeta potential 

of the AuNPs samples are -0.961 mV and -1.02 mV. The zeta potential of both AuNPs is nearly 0 

mV, indicating that the surface electrokinetic potential of the AuNPs is neutral, and the AuNPs are 

inert in the aspect of surface charge.  

Synthesis of hydrogels 

The hydrogel was synthesized for the demonstration of expanded tuning freedom and enlarged 

tuning degree. Specifically, a 50 mL hydrogel precursor solution was prepared by mixing a 4 M 

LiCl aqueous solution, 3.5 g of AAm, 30 mg of MBAA, 500 μL of a 10 wt.% APS aqueous 

solution, and 50 μL of TEMED using a centrifugal mixer (Kr-100, THINKY). The introduction of 

the LiCl salt served the purpose of preventing significant dehydration during prolonged diffusion 

experiments (Fig. S5). Subsequently, the hydrogel precursor solutions were subsequently cured in 

an acrylic mold which was cut using a laser cutter (EpilogLaser) and assembled using superglue 

(Krazy). The hydrogel precursor solution was then poured into the mold with the cuboid securely 

positioned at the top to form a reservoir. The assembly was subsequently placed in an oven (CL-

1000 Ultraviolet Crosslinker) and cured at 60 °C for 2 hours. Afterward, the concentrated AuNPs 

were injected into the central reservoir for further measurement and analysis. 

Identification of hydrogel mesh size 

With the assumption that hydrogel is fully swollen and water is a good solvent, the distance 

between neighboring crosslinkers at the undeformed state 𝑅0 can be estimated by the following 

relationship 6, 

 

𝑅0 ~ 𝑎𝜙−0.75𝐶∞
−0.25(1 − 2χ)−0.25 (S1) 
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where a = 0.154 nm is the equivalent bond length of AAm monomer, 𝜙 is the volume fraction as 

3% for the hydrogel, 𝐶∞ = 15.2 is the characteristic ratio of PAAm polymer, and χ = 0.466 is the 

Flory interaction parameter between PAAm polymer and water molecules.  

Construction of customized mechano-diffusion characterization platform 

Figure S1 illustrates the schematics of the customized mechano-diffusion characterization 

platform. The platform can be divided into the mechanical loading module, the force/torque 

measurement module, and the imaging module. In the mechanical loading module, a two-phase 

stepper motor drives a 1604-type ball screw with a linear guide to achieve static or dynamic 

uniaxial stretching of the hydrogel samples. Additionally, another two-phase stepper motor is used 

to apply torsion loads to the hydrogel samples. An Arduino UNO microcontroller controls the 

movement of this module. The force/torque measurement module integrates a force sensor with a 

9.8 N measurement range and a 1.9 mV/V sensitivity, as well as a torque sensor with a 0.3 Nm 

measurement range and a 0.6 mV/V sensitivity. Since the sensor outputs are at millivolt levels, an 

amplification circuit based on an INA128P instrumental amplifier amplifies the signals to volt 

levels. These measured forces and torques are then calculated and recorded on a computer via an 

NI USB 6008 data acquisition board and LabVIEW software. In the imaging module, a high-

resolution camera with a maximum resolution of 3264 × 2448 pixels and a video capture capability 

of 15 frames per second captures images. This setup depicts the diffusion profiles of the AuNPs in 

the hydrogel. During experiments, the camera's spatial resolution is approximately 0.015 

mm/pixel, which is sufficient for determining diffusivity, as the diffusion profiles are at the 

millimeter scale. 

Characterization of mechano-diffusion under uniaxial tension and torsion 

Figure S6a illustrates the experimental setup of the mechano-diffusion characterization under 

uniaxial tension and torsion, which consists of a mechanical system for applying the uniaxial 

tensile deformation and an imaging system for recording the diffusion process of AuNPs along the 

radial direction. The mechanical system involves a cylindrical hydrogel confined by two glass 

slides. The hydrogel was covalently bonded to the glass slides, following our previously reported 

protocol 7 (Fig. S6b). Specifically, we prepared a silane solution by vigorous magnetic stirring 

(300 rpm) a mixture of 200 mL of DI water, 30 μL of acetic acid, and 800 μL of TMSPMA for 2 

hours until the mixture became transparent. Subsequently, the glass slides were submerged in the 

solution for 1 hour, resulting in the functionalization of hydroxyl groups on the glass surface with 

silane TMSPMA via covalent siloxane chemistry. The covalent bonding between the 

functionalized glass and the hydrogel were achieved through the polymerization of the precursor 

solution onto the glass slides. 

For the sample under uniaxial tension, the lower glass (Fig. S6a) is fixed while the upper glass is 

lifted so that the cylindrical hydrogel sample is stretched along its axial direction with specific 

stretch ratios. Then, the AuNPs solution is dropped into the center vacancy of the hydrogel sample 

(Fig. S6a). The radial diffusion profile of the AuNPs in the hydrogel is observed under the 

undeformed state every 30 min from a camera placed under the lower glass, and the total diffusion 

time for each sample is 150 min.  

For the sample under torsion, the lower glass is fixed while the upper glass is rotated so that a 

twisting angle is formed between the upper and lower surfaces of the hydrogel sample. Then, the 

AuNPs solution is dropped into the center vacancy of the hydrogel sample (Fig. S6a). The radial 

diffusion profile of the AuNPs in the hydrogel is observed under the undeformed state every 30 
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min from a camera placed under the lower glass, and the total diffusion time for each sample is 

150 min. 

To estimate the diffusivity of the AuNPs in the hydrogel medium, we implement the following 

method to rigorously analyze the spatiotemporal concentration distribution of the AuNPs in the 

diffusion process. 

The 1D governing diffusion equation in the Cartesian coordinate system is as follows: 

 

𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2
 (S2) 

 

where c is concentration, t is diffusion time, x is diffusion distance, and D is diffusivity. In the 

cylindrical coordinate system, Eq. (S2) can be further expressed as: 

 

𝜕𝑐

𝜕𝑡
= 𝐷 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐

𝜕𝑟
) +

1

𝑟2

𝜕2𝑐

𝜕𝜃2
+

𝜕2𝑐

𝜕𝑧2
) (S3) 

 

where r is the diffusion distance along the radial direction, z is the axial distance, 𝜃 is the angular 

coordinate. Since the diffusion is symmetrical in the angular direction, namely 𝜕𝑐/𝜕𝜃 = 0, the 

Eq. S3 can be further simplified as: 

 

𝜕𝑐

𝜕𝑡
= 𝐷 (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑐

𝜕𝑟
) +

𝜕2𝑐

𝜕𝑧2
) = 𝐷 (

𝜕2𝑐

𝜕𝑟2
+

1

𝑟

𝜕𝑐

𝜕𝑟
+

𝜕2𝑐

𝜕𝑧2
) (S4) 

 

In this study, the cylindrical sample occupies the domain where −9 < 𝑟 < 9 and 0 < 𝑧 < 6 in 

millimeters (mm) as illustrated in Fig. S7a. The concentration of AuNPs in the reservoir that 

occupies the domain where −1.5 < 𝑟 < 1.5 and 3 < 𝑧 < 6 is set as a constant 𝑐 =  𝑐0, and the 

initial concentration in the rest of the sample is set as 𝑐 = 0. We use the finite difference methods 

in MATLAB to numerically solve Eq. S4. We can determine the measured diffusivity D by fitting 

the simulated concentration profile to the measured concentration profile.  

Characterization of mechano-diffusion under biaxial tension 

Figure S13a illustrates the experimental setup of the mechano-transport characterization under 

biaxial tension, which consists of a mechanical system for applying x-y plane biaxial tensile 

deformation and an imaging system for recording the diffusion process of AuNPs along the z 

direction. The four side surfaces of the cubic hydrogel sample are bonded with the glass slides via 

the glass-bonding technique according to the existing protocol 7. The four sides of the hydrogel 

sample can be stretched by moving the glass slides in x and y directions. The AuNPs solution is 

injected into the vacancy of the cubic hydrogel sample, and the diffusion profile along the z 

direction is observed by a camera. The total diffusion time is 240 min (Fig. S13b).  

To estimate the diffusivity of the AuNPs in the hydrogel medium, we implement the following 

method to rigorously analyze the spatiotemporal concentration distribution of the AuNPs in the 

diffusion process. 

The 3D governing diffusion equation in the Cartesian coordinate system is as follows: 
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𝜕𝑐

𝜕𝑡
= 𝐷 (

𝜕2𝑐

𝜕𝑥2
+

𝜕2𝑐

𝜕𝑦2
+

𝜕2𝑐

𝜕𝑧2
) (S5) 

 

where c is concentration, t is diffusion time, x, y, and z are diffusion distance, and D is diffusivity. 

In this case, the concentration distribution along the z direction is under observation since the x 

and y directions of the hydrogel sample are under tension loads. 

In this study, the cubic sample occupies the domain where −10 < 𝑥 < 10, −10 < 𝑦 < 10, and 

0 < 𝑧 < 20 in millimeters (mm) as illustrated in Fig. S14. The concentration of AuNPs in the 

reservoir that occupies the domain where  −1.5 < 𝑥 < 1.5, −1.5 < 𝑦 < 1.5, and 10 < 𝑧 < 20 is 

set as a constant 𝑐 =  𝑐0, and the initial concentration in the rest of the sample is set as 𝑐 =  0. We 

use the finite difference methods in MATLAB to numerically solve Eq. S5. We can determine the 

measured diffusivity D by fitting the simulated concentration profile to the measured concentration 

profile.  

Coarse-grained molecular dynamics simulation 

The coarse-grained (CG) molecular dynamics (MD) modeling is based on the molecular dynamic 

simulation software package LAMMPS. The simulation flow chart is illustrated in Fig. S15. A 3D 

crosslinked network is constructed with 3546 sphere monomers that are modeled with CG beads. 

To model the influence of the solutions on the diffusion mechanism, solution CG beads are also 

constructed with an initial uniform interval of 1σ along all directions. Using the Lennard-Jones 

(LJ) unit system, the diameter of the CG bead σ for the polymer chains was set as the length unit, 

while the diameter for the solution CG beads was set as 0.1σ. Along all three directions, the length 

of polymer chains is set as 36σ while the periodic boundary conditions (PBC) are applied. Cubic 

cells with a uniform side length of 6σ are considered, creating 8 polymer chains along each 

direction and a total of 125 cells in the whole system via the crosslinkers. Nanoparticles are initially 

located in the middle. 

LJ potential is used to represent the long-term interactions between the monomers of both polymer 

chains as well as solution and nanoparticles as well as in between monomers with the following 

equation 8, 

 

𝑈𝑖𝑗 = 4𝜀 ((
𝑟0

𝑟
)

12

− (
𝑟0

𝑟
)

6

) (𝑆6) 

 

where r is the distance between each pair of CG beads and r0 is the characterized length parameter 

and set as r0 = 1σ for the interactions between monomers and r0 = 3σ for the interactions between 

monomers and nanoparticles. The overall cut-off radius was set as 2.5σ for all setups to define the 

largest interactive distance between all CG beads. ε = 0.1kT is the interaction parameter set for the 

monomer interactions, where k is the Boltzmann constant and T = 0.01 is the system temperature. 

Other than the LJ potential, adjacent monomers within the polymer system are also defined with 

2-body bond connections and 3-body angle restrictions, which are assumed to follow the harmonic 

bond potential, 

 

𝑈𝑏 =  𝑘𝑏(𝑟 − 𝑟0)2 (𝑆7) 

 

where 𝑘𝑏 = 25𝑘𝑇/𝜎2 is a constant and 𝑟0 is the characterized length parameter representing the 

stable distance with 0 force. The r is the real-time distance between bonded CG beads. 
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The CG motion is governed by the Nose-Hoover thermostat 9, 

 

 

𝑚𝑖

𝑑2𝒓𝒊

𝑑𝑡2
= 𝒇𝒊 − 𝜁𝑚𝑖𝒗𝒊 (𝑆8) 

 

where 𝑚𝑖  is the mass of the particle 𝑖 ,  𝒓𝒊 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) is the position of the particle 𝑖  in 3-

dimensional space, 𝒇𝒊  and 𝒗𝒊 are the force and velocity vectors of the same particle, 𝜁  is the 

dynamical variable associated with the thermostat.  

The parameter setups referred to this work 8. The tensile behavior of one single-string polymer 

chain is first studied with former setups. As shown in Fig. 5A, a polymer chain with 6 monomer 

CG beads is first constructed and stabilized to achieve the structure file at a relaxed state. 

In the modeling of the uniaxial stretching process, the stabilization is first conducted with NVT 

ensemble for a total 1 × 106 steps. The time step is set as 0.0001𝜏 where 𝜏 = 𝜎√𝑚/𝜀 is the time 

unit of the LJ unit system. Afterward, the left end monomer is totally fixed along all 3 directions 

while the right end monomer is moved at a constant velocity of 0.1 𝜎/𝜏 for a total 2.4 × 106 steps. 

For the hopping diffusion modeling cases, the model constructed as shown in Fig. 5A. is used. 

After equilibrium using the same setups as the uniaxial stretching case, the atoms around the cell 

boundaries are fixed along all directions for consideration of stabilization and the whole system is 

equilibrated under NVT ensemble for a total 5 × 106  steps. The trace of the nanoparticle is 

recorded, and the diffusivity is represented with  

 

𝐷 = lim
𝑡→∞

(
𝑀𝑆𝐷

6𝑡
) (𝑆10) 

 

where MSD is the time-averaged mean square displacements defined by 

 

𝑀𝑆𝐷 =  〈(𝑟(𝑡0 + 𝑡) − 𝑟(𝑡0))
2

〉 (𝑆11) 

 

To study the influence of the nanoparticle diameter on the diffusivity, cases with different 

nanoparticle sizes (ranging from nanoparticle diameter 𝑑 = 0 to 𝑑 = 2𝑅0, where 𝑅0 = 6𝜎 is the 

mesh size 𝜉) are constructed and modeled. It should be noted that the density of the polymer and 

solution CG particles are all set as 1.0. As for the particle, the density is also set as 1.0 for cases 

with a diameter of 1.0. To remain consistent, the total weight of the particle is set to be the same 

for all particles of different diameters while the density is adjusted accordingly. 

Following the same modeling procedure and setup, we next studied the diffusivity of nanoparticles 

within the biaxial stretched polymer networks. We modeled the cases with the polymer network 

was stretched along x and y directions with a stretch ratio of 𝜆 ranging from 1.0 to 4.0. The 

normalized diffusivity with respect to the value within undeformed polymer chains (𝜆 = 1.0) is 

used for the comparison. It should be noted that the total number of polymer and solution CG 

beads are reduced without losing the comparability with the undeformed case. As shown in Fig. 5 

F-H, when the particle size is much smaller or much larger than the cell size (𝑑 = 0.5𝜉 or 𝑑 =
6.0𝜉 ), the diffusivity will not be influenced by the deformation ratio. In the former case, the 

particle is nearly free to move along all directions while in the latter case, the particle is constrained 
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in the cell where it was initially placed into. As for the case with medium particle size (𝑑 = 4.0𝜉), 

with the cell size increasing, the diffusivity increases significantly. 

Fabrication of pressure-triggered drug delivery system 

The pressure-triggered drug delivery system consists of a closed-loop pneumatic actuator and a 

drug-load hydrogel membrane. The closed-loop pneumatic actuator consists of a chamber made 

from high-stiffness silicon rubber, sealed by a deformable membrane made from low-stiffness 

rubber, and a closed-loop control system. The combination of the high-stiffness silicon chamber 

and the low-stiffness membrane is fabricated via the lost-wax method (Fig. S18) 10. We first cured 

a wax cylinder as a sacrificial support in an acrylic mold. Subsequently, a high-stiffness silicon 

rubber (Smooth SIL-940) precursor solution was poured into the mold to form a stiff hollow 

chamber measuring 45 mm × 50 mm (inner diameter × height), followed by the addition of a low-

stiffness silicon rubber (Eco flex 00-20) to form a 2-mm deformable membrane. After an overnight 

curing, the entire assembly was submerged into a hot water bath at 80 ℃ for melting the wax 

cylinder, yielding the pneumatic actuator. We also developed a closed-loop control system to 

regulate the pressure of the actuator (Fig. S19), which comprised components including a 

microcontroller (Arduino UNO), a motor driver board (L298N), an air pump, a pressure sensor 

(MPX10GP-ND), and the elastomeric actuator. The pressure sensor monitors the pressure within 

the inflated actuator and transmits the pressure as feedback to the microcontroller. Based on the 

feedback pressure, the microcontroller makes real-time adjustments to the speed of the air pump 

by manipulating the duty cycle of the pulse width modulation (PWM) output set to the monitor 

driver board. This closed-loop control mechanism enables precise and consistent pressure settings 

within the pneumatic actuator, ensuring a stable deformation applied on the drug-loaded hydrogel.  

To covalently bond a drug-loaded hydrogel onto the deformable membrane, we adopted the 

benzophenone-induced grafting photopolymerization 11. The pristine silicon membrane was first 

thoroughly cleaned with ethanol and deionized water, and completely dried with nitrogen gas. 

Thereafter, 200 μL of 10 wt% benzophenone solution was smeared evenly onto the membrane for 

10 min at room temperature. The benzophenone-treated membrane was further immersed in a 

drug-loaded hydrogel precursor solution, subjected to ultraviolet irradiation in an ultraviolet 

chamber (365 nm ultraviolet; UVP CL-1000) for 30 minutes. The hydrogel precursor solution was 

prepared by mixing aqueous solutions of 10 mL 12 wt% AAm as the monomer, 1 mL 0.23 wt% 

MBAA as the crosslinker, 200 μL APS as the initiator, 10 μL TEMED as the accelerator, and 500 

μL concentrated AuNPs solution. Under UV radiation, the monomers form PAAm polymers via 

free radical polymerization; meanwhile, surface absorbed benzophenone mediates the grafting of 

PAAm polymers onto the reactive sites at the surface of the silicon rubber. 
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Supplementary Text 

1. Particle diffusion in liquid medium 

Particle diffusivity 𝐷 in liquid medium is typically governed by medium viscosity 𝜂 following the 

Einstein-Stokes equation 𝐷 = (𝑘𝐵𝑇)/(3𝜋𝜂𝑑) , where 𝑘𝐵  is the Boltzmann constant, 𝑇  is the 

absolute temperature in Kevin, and 𝑑 is the particle diameter 12, 13. The viscosity of liquid medium 

strongly depends on temperature. Here, we choose water, diluted polymer solution, and 

concentrated polymer solution as representative liquid medium to illustrate their capabilities of 

tuning particle diffusivity via temperature variation. Given the temperature-dependent viscosity of 

water 𝜂 = 𝐴exp (
𝐵

𝑇
+ 𝐶𝑇 + 𝐷𝑇2) 14, the particle diffusivity tuning ratio by temperature variation 

from 273 K to 333 K in water can be calculated via 

 
𝐷

𝐷0
=

𝑇𝜂0

𝐴𝑇0exp (
𝐵
𝑇 + 𝐶𝑇 + 𝐷𝑇2)

 (S12) 

 

where 𝐴 = 1.856 × 10−11 mPa ∙ s , 𝐵 = 4209 K , 𝐶 = 0.04527 K−1 , 𝐷 = −3.376 × 10−5 K−2 , 

𝐷0 and 𝜂0 are particle diffusivity and viscosity of water at reference temperature 𝑇0. Given the 

temperature-dependent viscosity of polymer solution 𝜂 ~ 𝑇−𝑚 15, the particle diffusivity tuning 

ratio by temperature variation from 273 K to 333 K in polymer solution can be calculated via 

 

𝐷

𝐷0
= (

𝑇

𝑇0
)

1+𝑚

 (S13) 

 

where  𝑚 is the exponent equal to 0.5 for diluted polymer solution 16 and 9 for concentrated 

polymer solution 15, 17, 18, 𝐷0 and 𝜂0 are particle diffusivity and viscosity of polymer solution at 

reference temperature 𝑇0. Figure S1A plots the particle diffusivity tuning by temperature variation 

from 273 K to 333K in water, diluted polymer solution (DPS), and concentrated polymer solution 

(CPS) with 𝑇0 = 293 K. 

2. Particle diffusion in porous medium 

Particle diffusivity tuning by mechanical deformation in porous medium is mainly attributed to 

the deformation-induced changes in porosity. The strain-dependent particle diffusivity in porous 

medium can be described via 

 

𝐷

𝐷0
=

e𝐽 − 1

e − 1
 (S14) 

 

where 𝑱 is the volumetric Jacobian, 𝑫𝟎 is the particle diffusivity in porous medium at undeformed 

state 19. Specifically, when the porous medium is subject to uniaxial tensile deformation, 𝐽 = 1 +
(𝜆 − 1)(1 − 2𝜈) with 𝜆 being the uniaxial stretch and 𝝂 being the Poisson’s ratio. Figure S11b 

plots the particle diffusivity tuning by uniaxial deformation in porous medium with various 

Poisson’s ratio. 
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3. Particle diffusion in the undeformed polymeric medium 

The mode of particle diffusion in the undeformed polymeric medium is governed by particle size 

𝑑. When particle size d is smaller than the monomer radius 𝑟𝑓  (𝑑 < 𝑟𝑓), the mode of particle 

diffusion is dominated by the Einstein-Stokes equation 12, 13, expressed as 

 

𝐷𝑠𝑜𝑙 =
𝑘𝐵𝑇

3𝜋𝜂𝑑
 (S15) 

 

where 𝜂 is the viscosity of liquid solvent surrounding the polymeric medium. When particle size 

d is larger than the monomer radius 𝑟𝑓 while smaller than the mesh size 𝜉 (𝑟𝑓 < 𝑑 < 𝜉), the mode 

of particle diffusion is dominated by the Obstacle model 20, expressed as 

 

𝐷

𝐷𝑠𝑜𝑙
= exp [−

𝜋

4
(

𝑑 + 2𝑟𝑓

𝜉 + 2𝑟𝑓
)

2

] (S16) 

 

When particle size 𝑑 is comparable to or larger than the mesh size 𝜉, the mode of particle diffusion 

is dominated by the Hopping diffusion model 21, expressed as 

 

𝐷 ≅  
𝜉𝑐

2

𝜏𝑥
(

𝑑

𝜉
)

−1

exp (− (
𝑑

𝜉
)

2

) (S17) 

 

where 𝜉𝑐 is the correlation length of the polymer, and 𝜏𝑥 is the relaxation time of a network. 

4. Particle diffusion in the deformed polymeric medium 

In this work, we formulate a cross-scale mechano-transport theory to establish the relationship 

between macroscopic large deformation of bulk materials and microscale hopping diffusion of 

particles by integrating three models (Fig. S13): 1) eight-chain model to relate the macroscopic 

bulk deformation to the deformation of an individual polymer chain 22, 2) ideal chain model to 

correlate the free energy of an individual polymer chain with the polymer chain deformation 23, 

and 3) hopping diffusion model to relate the particle diffusivity to the energy barrier experienced 

by particles 21, 24. 

4.1 Eight-chain model 

Following the Arruda-Boyce model 22, the bulk material can be envisioned as an eight-chain 

network system, considering eight orientations of chains in space within a representative unit cube. 

The cube edges are taken to remain aligned with principle stretch space during deformation while 

chains linked at the center of the tube extend to the eight corners. By assuming the bulk material 

follows the standard kinematics of finite strain deformation, the chain length 𝑅 is correlated with 

the principle stretches 𝜆1, 𝜆2, 𝜆3 imposed on the bulk material, 

 

Λ = √
(𝜆1

2 + 𝜆2
2 + 𝜆3

2)

3
 (S18 − 1) 

 

where Λ = 𝑅/𝑅0 is the chain stretch with 𝑅 being the chain length in the current state and 𝑅0 

being the chain length in the undeformed state. Equivalently, Eq. (S14-1) can be rewritten as 
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Λ = √
tr(𝐅T𝐅)

3
 (S18 − 2) 

 

where 𝐅 is the deformation gradient of the bulk material.  

4.2 Ideal chain model 

Following the Langevin chain statistics 23, the individual polymer chain can be envisioned as a 

freely rotating chain segment consisting of N rigid links of equal length b. The initial chain length 

can be calculated based on a random walk statistical analysis, 

 

𝑅0 = √𝑁𝑏 (S19) 

 

Notably, the initial chain length determines the mesh size of the polymer network, namely 𝑅0 =
𝜉. When the freely jointed chain is subjected to a constant elongation force 𝑓, the chain length in 

the current state 𝑅 corresponds to the given force 𝑓 via a Langevin dependence following, 

 

𝑓 =
𝑘𝐵𝑇

𝑏
ℒ−1 (

𝑅

𝑁𝑏
) (S20) 

 

where ℒ−1(𝑥)  is the inverse Langevin function defined by ℒ(𝑥) = coth(𝑥) − 1/𝑥 . The free 

energy of an individual polymer chain can be further calculated by 𝐸𝑒 = ∫ 𝑓𝑑𝑅
𝑅

𝑅0
, expressed as  

 

𝐸𝑒 = 𝑁𝑘𝐵𝑇 (
𝛽

tanh𝛽
+ ln

𝛽

sinh𝛽
) (S21) 

 

where 𝛽 = ℒ−1(Λ/√𝑁). 

4.3 Hopping diffusion model.  

Hopping diffusion refers to a mechanism of nanoparticle movement within polymer networks as 

they transport through the polymer network by intermittently hopping from one location to 

another. Different from the particle diffusion governed by Einstein-Stokes equation, particle 

diffusivity in polymer networks is governed by the elastic energy barrier U that is experienced by 

polymer chains interacting with nanoparticles during their movement. Following the Cai-

Rubinstein model 21, the hopping particle diffusivity can be approximated as 

 

𝐷 ≅  
𝜉𝑐

2

𝜏𝑥
(√

𝑈

𝑘𝐵𝑇
)

−1

exp (−
𝑈

𝑘𝐵𝑇
) (S22) 

 

where 𝜉𝑐 is the correlation length, which can be replaced by the Kuhn length b in unentangled 

polymer networks as the hopping step size, and 𝜏𝑥 ≅ 𝜏0𝑁 is the Rouse relaxation time of the 

polymer network with 𝜏0 being the relaxation time of monomers and 𝑁 being the number of Kuhn 

monomers. When particles diffuse in the same polymer network at undeformed and deformed 

states, the particle diffusivity tuning ratio can be calculated by 
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𝐷

𝐷0
≅  √

𝑈0

𝑈
exp (−

𝑈 − 𝑈0

𝑘𝐵𝑇
) (S23) 

 

where 𝐷0  and 𝑈0  are particle diffusivity and corresponding energy barrier in the undeformed 

polymer network. 

4.4 Case study: Impact of Equal Biaxial Tensile Loading on Particle Diffusivity 

In this section, we employ the mechano-transport theory 25 to investigate the mechanism of particle 

diffusion in biaxially stretched hydrogels. The mechano-transport theory is used to establish the 

relationship between the macroscopic deformation of soft materials and the microscopic diffusion 

of particles. It integrates three models: the eight-chain model 23, 26, which relates the bulk 

deformation of the material to the stretch state of individual chains; the polymer chain model 27, 

which calculates the energy required to stretch these chains; and diffusion models 20, 21, which 

quantifies the diffusivity of particles across different diameters. 

When the hydrogel undergoes mechanical deformation, according to the eight-chain theory, each 

polymer chain is stretched with an identical stretch ratio Λ, which is expressed as 

Λ = √
1

3
(𝜆1

2 + 𝜆2
2 + 𝜆3

2) (𝑆24) 

where 𝜆1, 𝜆2, 𝜆3 are three principal stretch ratios imposed on the bulk material. When the hydrogel 

is subjected to the biaxial tension with stretch ratio 𝜆, the three principal stretch ratios are 𝜆1 =

𝜆2 = 𝜆, 𝜆3 =  
1

𝜆2. Following Eq. (S24), the stretch ratio of an individual polymer chain Λ when 

subjected to biaxial tension can be expressed as a function of the stretch ratio 𝜆 

Λ = √
1

3
(2𝜆2 +

1

𝜆4
) (𝑆25) 

From Fig. S17b, the stretch ratio of an individual polymer chain 𝛬 increases with stretch ratio 𝜆. 

To quantify the diffusivity of particles in the polymeric medium, we adopted two diffusion models: 

the obstruction model 20 for small particles and the hopping diffusion model 21 for large particles. 

For particles smaller than the material’s mesh size, the movement of particles is restricted by 

encountering a series of polymer chains that act as obstacles, leading to a reduction in particle 

diffusivity when compared with pure liquid medium. The obstruction model considers the 

probability of particles encountering obstacles to express the particle diffusivity in a polymeric gel 

𝐷0 normalized by the liquid diffusivity of its corresponding solvent 𝐷liq, as follows 

𝐷0

𝐷𝑙𝑖𝑞
= exp [−

𝜋

4
(

𝑑

𝜉
)

2

] (𝑆26) 

Where 𝑑  is particle diameter, 𝜉  is the mesh size of polymer network. The particle diffusivity 

decreases with the increase of the particle size. When the hydrogel is subjected to biaxial tension 

along x, y direction with stretch ratio 𝜆, the mesh size along z direction is expanded with a ratio 𝜆. 

Applying Eq. (S26), the particle diffusivity ratio 𝐷/𝐷0  is expressed as  
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𝐷

𝐷0
= exp [−

𝜋

4
(

1

𝜆2
− 1)

𝑑2

𝜉2
  ] (𝑆27) 

where 𝐷 is the particle diffusivity at deformed state and 𝐷0 is the particle diffusivity at undeformed 

state. The diffusivity, as depicted in Fig. 4E, shows a monotonic increase until it reaches a plateau 

with the rise in the biaxial stretch ratio. The enhancement of diffusivity (𝐷/𝐷0) of larger particle 

(e.g., 𝑑/𝜉 = 0.5) is more pronounced for small particles (e.g., 𝑑/𝜉 = 0.1).  

For particles larger than polymer’s mesh size, the particles need to overcome an energy barrier to 

transit from one confined cage to an adjacent one. According to the hopping diffusion model, the 

particle diffusivity in an undeformed polymer network can be approximated as follows: 

𝐷 ≅  
𝜉𝑐

2

𝜏𝑥
(√

𝑈

𝑘𝐵𝑇
)

−1

exp (−
𝑈

𝑘𝐵𝑇
) (𝑆28) 

where 𝑈 is the energy barrier, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature in Kelvin, 𝜉𝑐 is 

the correlation length of polymer network and 𝜏𝑥 is the relaxation time of the polymer network. 

The energy barrier 𝑈 is determined by the difference in free energy of the polymer chains under 

different stretch states:𝑈 = W(Λ𝐻) − W(Λ𝐿), where Λ𝐻  represents the higher stretch state, Λ𝐿  

represents the lower stretch state. Following Eq. (S28), when particles diffuse within the same 

material system, the ratio of diffusivity in the deformed state 𝐷 to that in the undeformed state 𝐷0 

can be quantified by comparing the energy barriers required in these two states:  

𝐷1

𝐷0
= √

𝑈0

𝑈1
exp (

𝑈0 − 𝑈1

𝑘𝐵𝑇
) (𝑆29) 

where 𝑈0 is the energy barrier need to overcome at undeformed polymer network, and 𝑈1 is the 

energy barrier for deformed polymer network. As shown in Fig. 4D, when biaxial tension is 

applied in the x and y directions, the polymer chains must stretch to form a square cage with a 

length equal to the particle diameter if the particles move through the polymer network in the z 

direction. For large particle diffuse through polymer network at undeformed state, the higher 

stretched state Λ𝐻0
 is  

Λ𝐻0
= √(

𝑑

 𝜉
)

2

+
1

3
 (𝑆30) 

The energy barrier at undeformed polymer network is 𝑈0 =  𝑊(𝛬𝐻0
). For large particles diffusing 

through a biaxially deformed polymer network, since each polymer chain has been stretched by 

the biaxial tension the lower stretch state Λ𝐿 = √
1

3
(2𝜆2 +

1

𝜆4). The higher stretch state is 

Λ𝐻 = √(
𝑑

 𝜉
)

2

+
1

3𝜆4
 (𝑆31) 

The energy barrier at biaxial stretched polymer network is 𝑈1 =  𝑊(𝛬𝐻) − 𝑊(𝛬𝐿). Following Eq. 

(S29), the diffusivity ratio between deformed and undeformed state is  
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𝐷1

𝐷0
= √

𝑊(𝛬𝐻0
)

𝑊(𝛬𝐻) − 𝑊(𝛬𝐿)
exp (

𝑊(𝛬𝐻0
) − 𝑊(𝛬𝐻) + 𝑊(𝛬𝐿)

𝑘𝐵𝑇
) (𝑆32) 

Based on Eq. (S32), the diffusivity ratio is not only related with the ratio between particle size and 

mesh size 𝑑/𝜉, but also is a function of biaxial stretch ratio 𝜆. Additionally, the diffusivity ratio is 

determined by the free energy of individual polymer chains, which is calculated by integrating the 

displacement-force relationship 𝑊 =  ∫ 𝐹𝑑𝑠
𝜆

1
, where 𝑠  is the displacement, 𝐹  represents the 

displacement-force relationship, and 𝜆 represents the stretched level of individual polymer chain. 

To quantify the diffusivity ratio, we utilize the force-displacement curve, consistent with the results 

from MD simulations, as shown in Fig. S17c. Fig. S17d-f illustrates the relationship between the 

diffusivity ratio and the biaxial stretch ratio for various particle sizes. As the biaxial stretch ratio 

increases, the diffusivity ratio rises. This enhancement in diffusivity is particularly significant for 

larger particles (e.g., 𝑑/𝜉 = 4), as the biaxial stretch in the bulk material greatly reduces the energy 

barrier.  The diffusivity from the MD simulation is larger than theoretical calculation for particles 

with 𝑑/𝜉 = 4 (Fig. S17e). In our simulations, each polymer chain is represented with CG particles 

whose size is set to 1/6 of the individual chain length, whereas the theoretical analysis assumes 

polymer chains with zero cross-sectional area. Consequently, during stretching, the actual increase 

in the distance between polymer chains exceeds the theoretical prediction, thus leading to a more 

pronounced strain-enhanced diffusivity in the modeling results compared to theoretical 

predictions. 
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Fig. S1. 

 
Mechanical system of the customized mechano-diffusion characterization platform. a, 

Schematic illustration and b, optical image of the mechanical platform to apply controlled tension 

and torsion loads to hydrogels, which consists of a linear motion slide and step motor as the driver, 

a force sensor to measure the applied force, and a torque sensor to measure the applied torque. The 

scale bar is 2 cm. 
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Fig. S2. 

 

Synthesis and characterization of functionalized AuNPs with 6 nm core diameter. a, 

Schematic illustration of the procedure for synthesizing functionalized AuNPs with a 6 nm core 

diameter. b, Schematic illustration of the structure of functionalized AuNPs and its corresponding 

TEM image. c, Histogram of the AuNPs’ core diameter 𝑑𝑐 based on the TEM image. d, DLS 

spectrum to characterize the AuNPs’ hydrodynamic diameter 𝑑ℎ. 
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Fig. S3. 

 

Synthesis and characterization of functionalized AuNPs with 18 nm core diameter. a, 

Schematic illustration of the procedure for synthesizing functionalized AuNPs with a 18 nm core 

diameter. b, Schematic illustration of the structure of functionalized AuNPs and its corresponding 

TEM image. c, Histogram of the AuNPs’ core diameter 𝑑𝑐 based on the TEM image. d, DLS 

spectrum to characterize the AuNPs’ hydrodynamic diameter 𝑑ℎ. 
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Fig. S4. 

 
Zeta potential measurements of AuNPs. The zeta potentials of the synthesized AuNPs with a, 6 

nm and b, 18 nm core diameter are nearly 0 mV, indicating their neutral surface electrokinetic 

potentials and inert surface charge characteristics.  
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Fig. S5. 

 
Characterization of water retention in hydrogels. a, Normalized mass m/m0 versus time of 

hydrogels with and without LiCl exposed in an open environment, where m and m0 are the 

measured masses of the hydrogel sample at time t and t = 0 hours, respectively. b, Images of the 

hydrogel samples with and without LiCl salt exposed in an open environment for 5 hours. The 

error bars in a represent the standard deviation from at least three independent tests. 
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Fig. S6. 

 
Device fabrication for the uniaxial mechano-diffusion characterization platform. a, 

Schematic illustrations of the assembly of an acrylic mold used to fabricate a cylindrical hydrogel 

sample confined between two glass substrates, containing a central reservoir designed to hold the 

AuNPs solution. b, the hydrogel sample is robustly bonded to glass via tough hydrogel glass 

bonding. 
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Fig. S7. 

 
Extraction of AuNPs diffusivity in cylindrical hydrogels under tension or torsion by finite 

difference method (FDM). a, Schematic illustration of the cylindrical coordinate system for the 

hydrogel sample. b, Normalized concentration distribution of AuNPs diffusing in the z-r plane of 

the hydrogel sample, calculated using the finite difference method in MATLAB. c, Normalized 

concentration distribution of AuNPs as a function of r along radius direction at z = 3, z = 4, and z 

= 5. The solid dots denote the measured experimental results, and the solid lines denote the fitted 

simulation curves. 
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Fig. S8. 

 
Extracted diffusivity of 6 nm AuNPs in undeformed, stretched, and twisted hydrogels. a, 

Comparison of the extracted diffusivity D as a function of diffusion time t in undeformed (λ = 1) 

and stretched (λ = 2) hydrogels. The short-term diffusivity corresponds to center diffusivity 𝐷𝑐, 

while the long-term diffusivity corresponds to center diffusivity 𝐷𝑒. b, Comparison of the 

extracted diffusivity D as a function of diffusion time t in undeformed (α = 0°) and twisted (α = 

90°) hydrogels. The error bars in a and b represent the standard deviation from at least three 

independent tests. 
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Fig. S9. 

 
Effects of uniaxial tension on mechano-diffusion of 6 nm AuNPs in hydrogels. Optical images 

of 6 nm AuNPs diffusion a, in an unstretched hydrogel (λ = 1) and b, in a stretched hydrogel (λ =
2). The center diffusivity is defined as the diffusivity measured at 30 min, and the edge diffusivity 

is defined as the measured diffusivity at 150 min. c, Center diffusivity tuning ratio Dc/D0 and d, 

edge diffusivity tuning ratio De/D0 versus stretch ratio λ of 6 nm AuNPs in hydrogels under 

uniaxial tension. 
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Fig. S10. 

 
Effects of pure torsion on mechano-diffusion of 6 nm AuNPs in hydrogels. Optical images of 

6 nm AuNPs diffusion a, in an untwisted hydrogel (𝛼 = 0°) and b, in a twisted hydrogel (𝛼 =
90° ). The center diffusivity is defined as the diffusivity measured at 30 min, and the edge 

diffusivity is defined as the measured diffusivity at 150 min. c, Center diffusivity tuning ratio 

Dc/D0 and d, edge diffusivity tuning ratio De/D0 versus stretch ratio λ of 6 nm AuNPs in hydrogels 

under uniaxial tension. 
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Fig. S11. 

 
Particle diffusivity tuning ratios in various mediums. a, Particle diffusivity tuning ratio versus 

temperature T in water, concentrated polymer solution (CPS), diluted polymer solution (DPS). b, 

Particle diffusivity tuning ratio versus tensile stretch 𝜆  in the porous medium with various 

Poisson’s ratio 𝜐. c, Diffusivity tuning ratio 𝐷/𝐷(𝜆 = 1) of particles with various size d versus 

tensile stretch 𝜆 in polymer networks with controlled mesh size ξ. 
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Fig. S12. 

 

Biaxial mechano-diffusion characterizations. a, Schematic illustration of the experiment setup 

that includes an imaging system to measure the spatiotemporal diffusion profile of particles and a 

mechanical system to control and monitor the biaxial tensile deformation applied onto the 

hydrogel. b, c, Representative diffusion profiles of AuNPs in the hydrogel sample within 240 

minutes. The scale bar in b is 5 mm. 
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Fig. S13. 

 
Extraction of AuNPs diffusivity in cubic hydrogels under biaxial tension by finite difference 

method (FDM). a, Schematic illustration of the cartesian coordinate system for the hydrogel 

sample. b, Normalized concentration distribution of AuNPs diffusing in the z-y plane of the 

hydrogel, calculated using the finite difference method in MATLAB. c, Normalized concentration 

distribution of AuNPs as a function of z at x = y = 0. The solid dots denote the measured 

experimental results, and the solid lines denote the fitted simulation curves. 
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Fig. S14. 

 
Theoretical framework of the mechano-diffusion theory. The mechano-transport theory a, 

integrates the eight-chain model, ideal-chain model, and particle diffusion model to b, establish 

the relationship between macroscopic large deformation of bulk materials 𝐅(λ) and microscale 

diffusion of particles 𝐷(𝐅, 𝑑/𝜉), where 𝐅 is deformation gradient, 𝑑 is particle diameter, and 𝜉 is 

hydrogel mesh size.  
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Fig. S15. 

 
Flow chart of molecular dynamics simulation. Coarse-grained molecular dynamics using the 

software package LAMMPS. 

 

 

  



 

 

30 

 

Fig. S16. 

 
Simulated trajectory of particles with different diameters diffusing in undeformed polymer 

networks. a, The illustration of particle diffusion in undeformed polymer networks with mesh size 

ξ. b, the trajectory of the particle with diameter d = 0.5 ξ. b, the trajectory of the particle with 

diameter d = ξ. c, the trajectory of the particle with diameter d = 2 ξ. 
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Fig. S17. 

 
Comparison of particle diffusivity tuning in hydrogels under biaxial tension between theory 

and simulation. a, Schematic illustration of projected view of a particle passing through a cubic 

polymer network at undeformed and deformed state. Particle diffusivity is governed by the synergy 

of geometric deformation and energy modulation. b, Individual chain stretch ratio Λ as a function 

of biaxial stretch ratio λ following the eight-chain model. c, Force-displacement curve of an 

individual polymer chain. The discrete dots are from molecular dynamics results, fitted by a 

quadratic function as the solid line. d, Comparison of diffusivity tuning ratio D/D0 versus stretch 

ratio λ for particles with diameters smaller than mesh size (e.g., d = 0.5ξ) between simulation and 

theory. e, Comparison of diffusivity tuning ratio D/D0 versus stretch ratio λ for particles with 

diameters with diameters slightly larger than mesh size (e.g., d = 4ξ) between simulation and 

theory. f, Comparison of diffusivity tuning ratio D/D0 versus stretch ratio λ for particles with 

diameters much larger than mesh size (e.g., d = 6ξ) between simulation and theory.  
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Fig. S18. 

 
Fabrication of pressure-triggered drug delivery system. a, Fabrication process of the actuator, 

using lost-wax casting method with silicone rubber. b, Images of actuator under pressure of 0 kPa, 

2.5 kPa, 5.0 kPa, and 10.0 kPa. 
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Fig. S19. 

 
Air pressure control system of the actuator. a, The diagram of the control system, with a 

pressure value feedback loop. b, The dynamic performance of the pressure in the inflated actuator 

under the pulse width modulation (PWM) wave with 90% duty ratio. c, The relationship between 

the PWM wave duty ratio and the pressure in the actuator. 
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Fig. S20. 

 
Programmable hydrogel deformation by controlled inflation pressure. a, pressure-triggered 

drug delivery system consists of an elastomeric actuator and a hydrogel membrane. b, Nominal 

stress versus stretch curve of the elastomer fitted by the Ogden model as the input for FEA 

simulation. c, Nominal stress versus stretch curve of the hydrogel fitted by the Ogden model as the 

input for FEA simulation. d, Snapshots of the stress distribution in the hydrogel membrane by 

inflating the elastomeric actuator with pressure of 0, 2.5, 5.0, and 10.0 kPa. 𝛆𝐦𝐚𝐱 is the maximum 

principal strain. e, Images of the deformed hydrogel membrane by inflating the elastomeric 

actuator with pressure of 0, 2.5, 5.0, and 10.0 kPa. 
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Table S1. 

Summarized diffusivity tuning ratio and tuning time 

Medium Stimuli Tuning ratio Tuning time (min) Reference 

Water Temperature 4.45 11.9 14 

DPS Temperature 1.34 16.7 16 

CPS Temperature 7.32 33 15, 17, 18 

PS Light 3.86 30 28 

Water Magnetic field 0.9987 0.1 29 

Water Electrical field 1.15 0.1 30 

Tissue Mechanical 0.45 2 31 

This work Mechanical 48 0.1  
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Movie S1. 

Impact of uniaxial tension on 6 nm AuNPs diffusion in hydrogels. 

Movie S2. 

Impact of pure torsion on 6 nm AuNPs diffusion in hydrogels. 

Movie S3. 

Impact of biaxial tension on 6 nm AuNPs diffusion in hydrogels. 

Movie S4. 

Impact of biaxial tension on particle diffusion in polymer networks. 

Movie S5. 

Programmable hydrogel deformation by controlled inflation pressure.  
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