Supporting Information

In Silico Exploration of Acetic Acid driven Multicomponent Synthesis: Design,

Characterization, and Antioxidant Evaluation of Spiroacridines and Spiroquinolines

Subham G. Patel^{a,b}, Dipti B. Upadhyay^a, Nirajkumar V. Shah^b, Mehul P. Parmar^a, Paras J. Patel^a, Apoorva Malik^c, Rakesh K Sharma^c, and Hitendra M. Patel^{a*}

^a Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar- 388120, Gujarat, India

^b J & J College of Science, Nadiad – 387001, Kheda, Gujarat, India

^c Sustainable Materials and Catalysts Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology, Jodhpur, India

* Corresponding Author: Hitendra M. Patel, E-mail: *hm_patel@spuvvn.edu*.

Table of Contents

Sr. No.	Contents	
1	¹ H-NMR & ¹³ C{ ¹ H}-NMR Spectral data of all Compounds 4a-x .	
2	HRMS Spectral data of all Compounds 4a-x .	
3	ADMET properties of Compound 4a and 4v.	S34

Figure **S1**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4a**.

Figure **S3**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4b**.

Figure **S5**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4c**.

S5

Figure **S9**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4e**.

Figure **S15**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4h**.

Figure **S17**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4i**.

Figure **S19**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4j**.

Figure **S21**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4k**.

Figure **S24**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4m**.

Figure **S26**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4n**.

Figure **S30**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4p**.

Figure **S32**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4q**.

Figure **S34**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4r**.

Figure **S36**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4s**.

Figure **S38**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4t**.

Figure **S40**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4u**.

Figure **S42**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4v**.

Figure **S44**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4w**.

Figure **S46**: ¹H-NMR (500 MHz, DMSO-d₆) of Compound **4x**.

Figure **S51**: HRMS of Compound **4d**.

Figure **S53**: HRMS of Compound **4f**.

Compound Spectra

Figure **S58**: HRMS of Compound **4k**.

Figure **S59**: HRMS of Compound **4I**.

Counts vs. Mass-to-Charge (m/z)

Figure **S62**: HRMS of Compound **40**.

Compound Spectra

Figure S65: HRMS of Compound 4r.

Figure **S66**: HRMS of Compound **4s**.

Sr. No.	Properties	4a	4v		
Physicochemical properties					
1	Molecular weight (g/mol)	388.42	376.36		
2	Number of rotational bonds	0	1		
3	Number of H-bond acceptors	4	5		
4	Number of H-bond donors	2	2		
5	Molar Refractivity	113.3	105.63		
6	Topological Polar Surface Area	76.66	85.89		
Lipophilicity					
7	XLOGP3	2.92	1.70		
8	WLOGP	2.58	1.56		
9	MLOGP	2.40	1.44		
Pharmacokinetics					
10	Gastrointestinal absorption	High	High		
11	BBB permanent	Yes	No		
12	P-gp substrate	Yes	Yes		
13	CYP1A2 inhibitor	Yes	No		
14	CYP2C19 inhibitor	Yes	Yes		
15	CYP2C9 inhibitor	Yes	Yes		
16	CYP2D6 inhibitor	Yes	Yes		
17	CYP3A4 inhibitor	Yes	Yes		
Drug-likeness					
18	Lipinski	0	0		
19	Ghose	0	0		
20	Veber	0	0		
21	Egan	0	0		
22	Muegge	0	0		
23	Bioavailability Score	0.55	0.55		
Medicinal Chemistry					
24	PAINS alerts	0	0		
25	Brenk alerts	0	0		

Table S1 ADMET properties of Compound **4a** and **4v**.