Supporting Information

Complexation-Driven Ion-Exchange Polymer Inclusion Membranes for Separation of Cobalt and Nickel ions from Lithium ion via Proton Pumping

Babafemi Adigun^{a, b}, Bishnu P. Thapaliya^{c*}, Huimin Luo^{d*}, Sheng Dai^{a, b, c*}

^a Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, United States

^b Institute of Advanced Materials & Manufacturing, Knoxville, Tennessee 37920, United States

^c Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

Email: prasadthapab@ornl.gov, dais@ornl.gov

^d Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

37831, United States

Email: <u>luoh@ornl.gov</u>

KEYWORDS: Ion-Exchange Polymer Inclusion Membrane (IEPIM), ionic liquids, membrane separation, membrane stability.

Synthesis of Ionic Liquids

Ionic liquid 1-Octyl-3-methylImidalozium bis(trifluoromethanesulfonimide) (OMIm-NTf₂) was synthesized by modified procedure from the literature.¹

¹H NMR (400 MHz, DMSO-D6) δ 9.38 – 8.91 (s, 1H, H₂), 7.72 (d, J = 1.9 Hz, 1H, H₄), 7.65 (d, J = 1.7 Hz, 1H, H₃), 4.19 – 4.04 (t, J = 7.2 Hz, 2H, H₅), 3.80 (s, 3H, H₁), 1.92 – 1.51 (m, J = 7.2 Hz, 2H, H₆), 1.42 – 0.92 (m, J = 8.8 Hz, 10H, H₁₁, H₁₀, H₉, H₈, H₇), 0.87 – 0.46 (t, J = 6.7 Hz, 3H, H₁₂).

¹³C NMR (101 MHz, DMSO-D6) δ 137.02 (C₂), 124.14 (C₄), 122.79 (C₃), 120.02 (q, J = 322.0 Hz) (CF₃), 49.30 (C₅), 36.25 (C₁), 31.68 (C₆), 29.90 (C₇), 29.00 (C₈), 28.85 (C₉), 26.01 (C₁₀), 22.58 (C₁₁), 14.43 (C₁₂).

Membrane Characterization

Infrared (IR) spectroscopy was conducted on a Nicolet IS50 FT-IR (ATR) spectrometer in the range of 4000-500 cm⁻¹. The surface morphology of the IEPIM and PVDF-HFP was investigated on a Zeiss Auriga Crossbeam scanning electron microscopy (SEM).

FTIR Spectra of Cyanex 301

Figure S1: FTIR Spectra of Cyanex 301 showing the peak corresponding to S—H stretching bonds.

Transport of Co²⁺, Ni²⁺ and Ni across IEPIM at different weight compositions.

Figure S2: Co²⁺, Ni²⁺ and Li⁺ transport across IEPIM at varying weight percent composition (a) 0% wt. composition (b) 10% wt. composition (c) 20% wt. composition and (d) 30% wt. composition.

Figure S3: (a) Transport of Co^{2+} (b) Transport of Ni^{2+} across an IEPIM at different thickness. The concentration of the feed solution decreased over time, showing that IEPIM was able to extract Co^{2+} and Ni^{2+} from the feed solution.

Stability of IEPIM for Transport of Co²⁺ and Ni²⁺

Figure S4: Transport of Co^{2+} , Ni^{2+} and Li^+ after 24 hours across IEPIM for three cycles: (a) 1^{st} cycle, (b) 2^{nd} cycle, (c) 3^{rd} cycle.

Figure S5: (a) Transport efficiency of 5 transport cycles. Feed solution: 100 mL of 0.1 mM Li⁺, Co²⁺, and Ni²⁺. Receiving Solution: 2M HCl. (b) SEM image of the IEPIM after 5 transport cycles.

Figure S6: (a) FTIR (b) TGA of IEPIM after 5 transport cycle of experiments under N_2 at a scan

rate of 10°C/min

Figure S7: EDXRF spectra of the IEPIM (a) before transport experiment (b) after 5 cycles of experiment showing the presence of cobalt and nickel in the membrane.

REFERENCES

(1) Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. *Inorganic chemistry* **1996**, *35* (5), 1168-1178.