Electronic Supplementary Material (ESI) for RSC Sustainability. This journal is © The Royal Society of Chemistry 2024

Title

Future Material Demand and Greenhouse Gas Emissions Implications for Electrification of the UK Light-Duty Vehicle Fleet

Authors

Ben Davies^{1,*}

Jorge A. Llamas-Orozco¹

Fanran Meng^{2, **}

I. Daniel Posen³

Heather L. MacLean³

Amir F. N. Abdul-Manan⁴

Jon McKechnie¹

Affiliations

1. Low Carbon Energy and Resource Technologies, University of Nottingham, Nottingham, United Kingdom

2. Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, United Kingdom

3. Department of Civil & Mineral Engineering, University of Toronto, Toronto, Ontario, Canada

4. Strategic Transport Analysis Team, Transport Technologies R&D, Research & Development Center (R&D), Saudi Aramco, Dhahran, Saudi Arabia

Correspondence

* Ben.Davies@nottingham.ac.uk, +44(0)115 951 4002

** F.Meng@sheffield.ac.uk, +44(0)114 222 7510

Supplementary model information

Vehicles module

Table S1: Kerb weight by vehicle technology [1].					
Vehicle technology	Fixed kerb weight, less traction battery, kg	Kerb weight including 2020 market battery, kg			
P-ICEV	1369	1369			
D-ICEV	1796	1796			
HEV	2032	2090			
PHEV	2032	2090			
BEV	1830	2158			

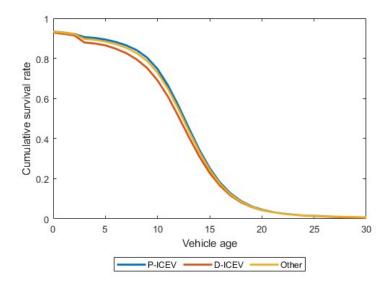
 Table S2: Materials composition by vehicle technology, adopted from [2].

Material	P- ICEV	D- ICEV	HEV	PHE V	BEV
Steel	59.9%	59.9%	59.3%	58.8%	58.4%
Wrought Aluminium	4.6%	4.6%	2.7%	2.6%	3.0%
Cast Aluminium	8.2%	8.2%	9.7%	10.3%	10.7%
Copper	2.4%	2.4%	4.0%	4.6%	6.3%
Automotive Plastics	15.3%	15.3%	12.6%	12.2%	14.3%
Rubber	3.9%	3.9%	3.3%	3.2%	3.3%
Platinum	0.0%	0.0%	0.0%	0.0%	0.0%

Table S3: Fuel and energy consumption by vehicle technology, adapted from [3].

Vehicle technology	Fuel consumption, I/100 km	Vehicle technology	Electricity consumption, kWh/100 km
P-ICEV	6.15	PHEV	17.3
D-ICEV	5.87	BEV	17.7
HEV	5.17		
PHEV	1.94		

PHEV fleet-class average utility factor = 0.818


Table S4: Vehicle battery capacity for	electrified powertrains, ad	lopted from [2].

Vehicle technology	Battery capacity, kWh
HEV	15.0
PHEV	15.0
BEV	84.0

						F 43
Table S5: 1	Materials	composition	by battery	chemistry,	adopted from	[4]

Material	NMC111	NMC532	NMC622	NMC811	NMC955	NCA	LFP
LiCO ₃	14.6%	14.7%	13.8%	0.0%	0.0%	0.0%	8.4%
NiSO ₄	20.4%	31.6%	34.6%	40.1%	45.1%	44.7%	0.0%
MnSO ₄	19.9%	18.0%	11.2%	4.9%	2.5%	0.0%	0.0%
CoSO ₄	20.4%	12.8%	11.5%	5.0%	2.5%	8.5%	0.0%
LiOH	0.0%	0.0%	0.0%	7.8%	7.8%	8.6%	9.7%
Graphite	20.2%	20.6%	22.1%	24.4%	24.4%	23.4%	19.1%
Copper	7.2%	7.2%	7.1%	7.2%	7.2%	6.8%	8.3%
Aluminium	17.3%	17.3%	17.8%	18.4%	18.4%	18.0%	17.5%

Fleet module

Figure S1: Cumulative vehicle survival rate by age for fleet-average vehicle technologies, calculated from [5]. *Due to insufficient data, HEV, PHEV, and BEV follow the fleet average for "Other" technologies.*

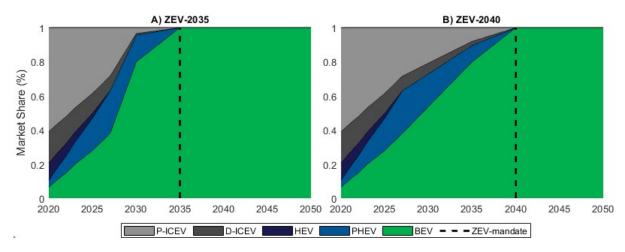


Figure S2: Fleet vehicle market scenarios, adapted from [6].

Material	Primary production, kg CO ₂ eq./kg	Secondary production, kg CO ₂ eq./kg
Steel	1.978	1.225
Wrought Aluminium	13.840	0.813
Cast Aluminium	5.685	0.813
Copper	7.199	0.017
Plastic	4.149	0.000
Rubber	4.777	0.000
Platinum	120290	35737

Materials and manufacturing module

Batteries module scenarios

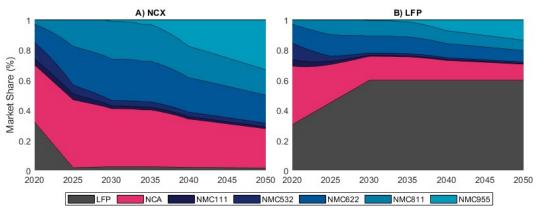
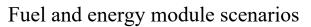



Figure S3: Battery chemistry market scenarios, adopted from[7].

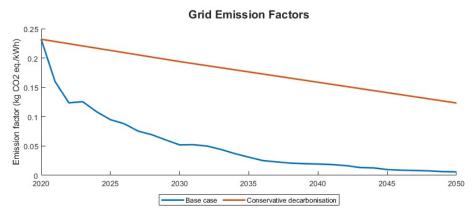


Figure S4: Grid generation emissions factor scenarios.

Life cycle assessment emissions factors

Table S7: Summary of life cycle inventory datasets consulted from the ecoinvent database [8].
ecoinvent dataset
steel production, low-alloyed, hot rolled_RER_2020_Allocation, cut-off
steel production, chromium steel 18_8, hot rolled_RER_2020_Allocation, cut-off
aluminium production, primary, ingot IAI Area, EU27 & EFTA 2020 Allocation, cut-off
aluminium ingot, primary, to aluminium, wrought alloy market_GLO_2020_Allocation, cut-off
aluminium ingot, primary, to aluminium, cast alloy market_GLO_2020_Allocation, cut-off
sheet rolling, aluminium_RER_2020_Allocation, cut-off
copper production, cathode, solvent extraction and electrowinning process_GLO_2020_Allocation,
cut-off
wire drawing, copper_RER_2020_Allocation, cut-off
acrylonitrile-butadiene-styrene copolymer production_RER_2020_Allocation, cut-off
epoxy resin, liquid_RER_2020_Allocation, cut-off
fibre, viscose_GLO_2020_Allocation, cut-off
polyethylene production, high density, granulate_RER_2020_Allocation, cut-off
polypropylene, granulate_GLO_2020_Allocation, cut-off
polyphenylene sulfide_GLO_2020_Allocation, cut-off
polyurethane, flexible foam_RER_2020_Allocation, cut-off
printed wiring board, mounted mainboard, desktop computer, Pb free_GLO_2020_Allocation, cut-
carbon fibre reinforced plastic, injection moulded_GLO_2020_Allocation, cut-off
synthetic rubber production_RER_2020_Allocation, cut-off
platinum group metal, extraction and refinery operations_ZA_2020_Allocation, cut-off
road vehicle factory_GLO_2020_Allocation, cut-off
petrol production, low-sulfur_Europe without Switzerland_2020_Allocation, cut-off
diesel production, low-sulfur, petroleum refinery operation_Europe without
Switzerland_2020_Allocation, cut-off
manual dismantling of used passenger car with internal combustion engine_GLO_2020_Allocation,
treatment of used glider, passenger car, shredding_GLO_2020_Allocation, cut-off
treatment of used internal combustion engine, shredding_GLO_2020_Allocation, cut-off
treatment of used powertrain for electric passenger car, manual dismantling_GLO_2020_Allocation, cut-off
treatment of automobile catalyst RER 2020 Allocation, cut-off

treatment of automobile catalyst_RER_2020_Allocation, cut-off

Supplementary model results

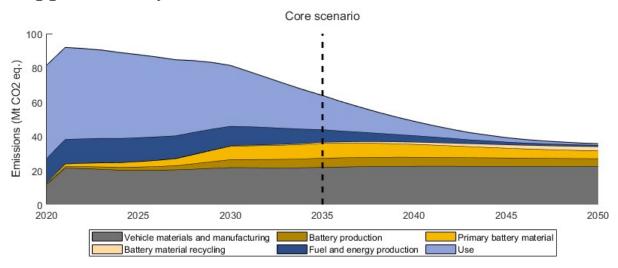


Figure S5: Annual GHG emission results for the Core scenario.

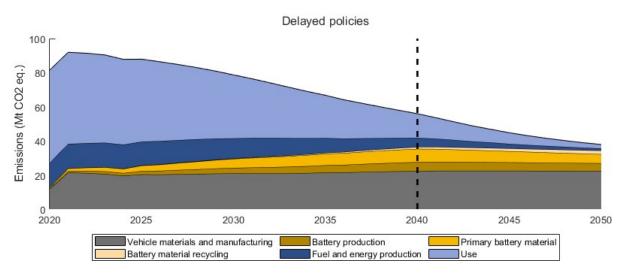


Figure S6: Annual GHG emission results for the Delayed policies scenario.

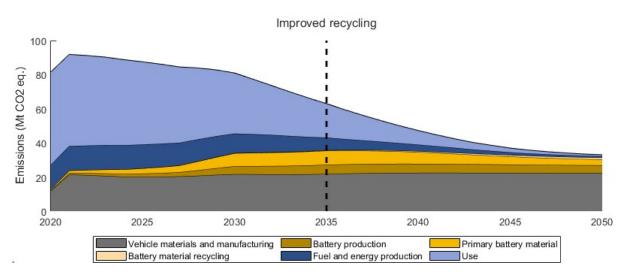


Figure S7: Annual GHG emission results for the Improved recycling scenario.

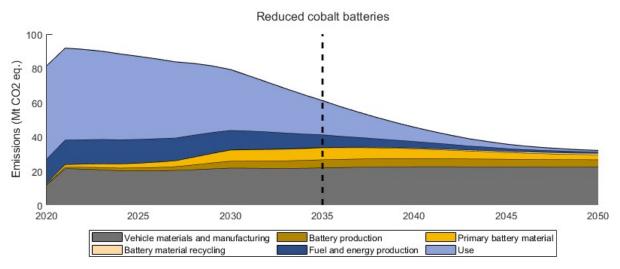


Figure S8: Annual GHG emission results for the Reduced cobalt batteries scenario.

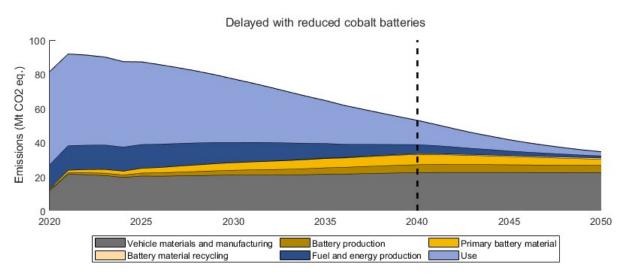


Figure S9: Annual GHG emission results for the Delayed with reduced cobalt batteries scenario.

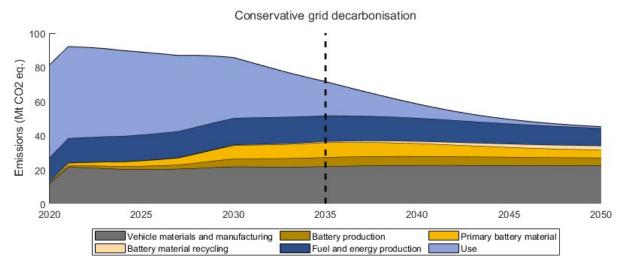


Figure S10: Annual GHG emission results for the Conservative gird decarbonisation scenario.

References

- [1] European Environment Agency, "Monitoring of CO2 emissions from passenger cars Regulation (EU) 2019/631," 2023. [Online]. Available: co2cars.apps.eea.europa.eu
- [2] GREET, "GREET Life Cycle Model User Guide," *Argonne National Labratory*, pp. 169–232, 2020, [Online]. Available: www.impact-test.co.uk
- [3] Vehicle Certification Agency, "Fuel Consumption & CO2 Databases." Accessed: Jun. 05, 2023. [Online]. Available: https://www.vehicle-certification-agency.gov.uk/fuel-consumption-co2/
- [4] J. A. Llamas-Orozco *et al.*, "Estimating the Environmental Impacts of Global Lithium-Ion Battery Supply Chain: A Temporal, Geographical, and Technological Perspective," *PNAS Nexus*, vol. 2, no. 11, pp. 1–16, 2023, doi: 10.1093/pnasnexus/pgad361.
- [5] Department for Transport and Driver and Vehicle Licensing Agency, "Vehicle licensing statistics: 2022," National statistics. [Online]. Available: https://www.gov.uk/government/statistics/vehicle-licensing-statistics-2022
- [6] Department for Transport, "Zero emission vehicle (ZEV) mandate consultation: Summary of responses and joint government response," 2023.
- [7] C. Xu, Q. Dai, L. Gaines, M. Hu, A. Tukker, and B. Steubing, "Future material demand for automotive lithium-based batteries," *Commun Mater*, vol. 1, no. 1, p. 99, Dec. 2020, doi: 10.1038/s43246-020-00095-x.
- [8] ecoInvent, "ecoinvent database V3.7." Accessed: May 25, 2022. [Online]. Available: https://ecoinvent.org/