Sustainable synthesis of $\mathbf{1 , 4}$-disubstituted and N unsubstituted 1,2,3-triazoles via reusable ZnO -CTAB nanocrystals

 Deori*a ${ }^{\text {a }}$ and Diganta Sarma* ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India.
E-mail: kalchemdu@gmail.com, dsarma22@gmail.com
${ }^{\mathrm{b}}$ Central Instruments Facility, Indian Institute of Technology Guwahati, Guwahati, 781039
Assam, India

Supporting Information

Contents

1. General information S3
2. Controlled reactions S3-S4
3. SEM image of the synthesized $\mathrm{ZnO}-\mathrm{CTAB}$ nanoparticles S4
4. Atom Economy, E-factor and Eco-score calculation S4-S14
5. Single crystal XRD S14-S15
6. Characterization data of the compounds S16-S25
7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of triazole derivatives S26-S59
8. References S609. Check CIF file of the single crystalS61-S62

1. General Information

All experiments were done in oven dried glasswares. The reagents and solvents were purchased from commercial suppliers and used without any further purification. All reported products refer to isolated yield of pure products. The NMR were recorded in CDCl_{3} solvent using TMS as an internal standard The chemical shifts of the analyzed products are informed in parts per million (ppm) and splitting patterns are assigned as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Thermo Scientific Endura LC/MS mass spectrometer has been used for recording mass spectra of the products.

2. Table S1: Controlled Reaction ${ }^{[a]}$

Serial no.	Catalyst	$\mathbf{1 , 4}$ and 1,5 isomers ratio	Yield (\%) ${ }^{[\mathbf{b]}}$
1	ZnO (without stabilized with CTAB)	$80: 20$	60
2	ZnO-CTAB calcined	$100: 0$	98
3	ZnO-CTAB	$100: 0$	99

${ }^{a}$ Reaction conditions: 4-chlorobenzylazide (1 mmol), phenylacetylene (1.2 mmol), $\mathrm{H}_{2} \mathrm{O}: E G(3 \mathrm{ml})$, catalyst (5 mg). ${ }^{b}$ Isolated Yields

3. Characterization of $\mathbf{Z n O}$-CTAB nanocrystals

The SEM analysis of the synthesized $\mathrm{ZnO}-\mathrm{CTAB}$ nanocatalyst features a cloudy hazy like structures as can be seen from Figure S1.

Figure S1: SEM image of the Synthesized $\mathrm{ZnO}-C T A B$ nanoparticles

4.1. Atom economy calculation:

$$
\% \text { Atom Economy }=\frac{\text { Formula weight (FW) of atoms utilized }}{\text { Formula weight (FW) of all reactants used in the reaction }} \times 100 \%
$$

In the direct azide-alkyne cycloaddition reaction (Scheme $2 \boldsymbol{\&}$ 3), the 1,4-disubstituted 1,2,3triazoles are formed without the production of any byproducts. Hence, the atom economy of all the triazoles would be almost 100%. For instance,

Reactants				Utilized	Unutilized	
	Formula	FW	Formula	FW	Formula	FW
	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{ClN}_{3}$	167.03	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{3}$	269.07	-	-

	$\mathrm{C}_{8} \mathrm{H}_{6}$	102.05			-	-
Total		269.08		269.07		

$$
\begin{aligned}
\% \text { Atom Economy } & =\frac{\text { Formula weight of atoms utilized }}{\text { Formula weight of all reactants used in the reaction }} \times 100 \% \\
& =\frac{269.07}{269.08} \times 100 \% \\
& =100 \%
\end{aligned}
$$

The \% atom economy of the other 1,4-disubstituted 1,2,3- triazoles products of Scheme 2 are as follows:

Entry	\% Atom economy	Entry	\% Atom economy
3a	99	3 e	100
3b	99	3 f	100
3c	99	3 g	100
3d	99		

The atom economy of the,2,3- triazoles products of Scheme $\mathbf{3}$ are shown below:

Entry	\% Atom economy	Entry	\% Atom economy
6 a	100	61	100
6b	100	6 m	100
6c	100	6 n	100
6d	100	6 o	100
6e	100	6 p	100
6f	100	6 q	100
6g	100	6 r	100
6h	100	6 s	100
6i	100	6 t	100
6j	100	6 u	100

6 k	100	6 v

Atom econonmy calculation for the One-pot method:

During the one-pot three component reaction, NaBr is released along with the product. Hence, the atom economy of this zinc catalyzed reaction will be as follows:

Reactants			Utilized		Unutilized	
Formula	FW	Formula	FW	Formula	FW	
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{ClBr}$	205.93	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{3}$	269.07	NaBr	101.91	
$\mathrm{C}_{8} \mathrm{H}_{6}$	102.05					
NaN_{3}	65.00					
Total	372.98		269.07	NaBr		

$$
\begin{aligned}
\% \text { Atom Economy }= & \frac{\text { Formula weight of atoms utilized }}{\text { Formula weight of all reactants used in the reaction }} \times 100 \% \\
& =\frac{269.07}{372.98} \times 100 \% \\
& =72.14 \%
\end{aligned}
$$

The calculated atom economy of the other triazole derivatives (Scheme 4, Entry 9a-9h) are as follows:

Entry	\% Atom economy	Entry	\% Atom economy
9a	73.59	9 e	76.29
9b	75.43	9 f	72.52

9 c	69.76	9 g	74.58
9 d	76.24	9 h	73.32

Atom econonmy calculation for N -unsubstituted 1,2,3-triazole:

For the one-pot multicomponent synthesis of N -unsubstituted 1,2,3-triazole, NaNO_{2} is released during the reaction. Hence, the atom economy of the reaction will be as follows:

Reactants			Utilized		Unutilized	
Formula	FW	Formula	FW	Formula	FW	
$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$	106.04	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{3}$	145.06	NaNO_{2}	68.98	
$\mathrm{CH}_{3} \mathrm{NO}_{2}$	61.02					
NaN_{3}	65.00					
Total	232.06		145.06		68.98	

$$
\begin{aligned}
\% \text { Atom Economy } & =\frac{\text { Formula weight of atoms utilized }}{\text { Formula weight of all reactants used in the reaction }} \times 100 \% \\
& =\frac{145.06}{232.06} \times 100 \% \\
& =62.52 \%
\end{aligned}
$$

Entry	\% Atom economy	Entry	\% Atom economy
14 a	66.30	14 f	71.09
14 b	65.22	14 g	73.85
14 c	64.65	14 h	63.49

14 d	69.42	14 i	60.83
14 e	72.02	14 j	66.30

The calculated atom economy for 1,4,5-trisubstituted 1,2,3-triazole derivatives (Scheme 6, Entry 17a-17c) are as follows:

Entry	\% Atom economy	Entry	\% Atom economy
17 a	100	17 c	100
17 b	100		

(10) Use of reactants and solvents allows to improve sustainability scores. To prove that Efactor and Eco-scale should be given for these ZnAAC reactions.

4.2. Environmental factor (E-factor)

The E-factor of a reaction is a simple metric to define how green a reaction is and is defined as the ratio of mass of waste per mass of product.

$$
\begin{gathered}
\text { E factor }=\frac{\text { mass of total waste }}{\text { mass of product }} \\
\text { Or } \text { E factor }=\frac{\text { mass used }- \text { mass recovered }}{\text { mass of product }}
\end{gathered}
$$

Procedure for the synthesis of 1,4-disubstituted 1,2,3-triazoles (Scheme 2)

The as-synthesized catalyst (5 mg) was added to a mixture of substituted benzylazide (1 mmol) and alkyne (1.2 mmol) in $\mathrm{H}_{2} \mathrm{O}: \mathrm{EG}$ reaction medium ($6: 1 \mathrm{ratio}, 3 \mathrm{ml}$) at room temperature. Then, the reaction mixture was heated in an oil bath at constant temperature of $60^{\circ} \mathrm{C}$ for $3-4 \mathrm{~h}$. After that, the reaction mixture was allowed to cool and the product was extracted by adding ethyl acetate $(1 \mathrm{ml})$ and water $(1 \mathrm{ml})$. The solvent was evaporated under reduced pressure. The final product was purified by column chromatography over silica gel using hexane/ethyl acetate mixture and the products obtained were characterized by NMR and mass spectroscopy.

E-factor calculation for the synthesis of 1,4-disubstituted 1,2,3-triazoles (Scheme 2, Entry 3a):

$$
\begin{aligned}
& \text { Substrate: Benzylazide }(1 \mathrm{mmol}) \quad=0.133 \mathrm{~g} \\
& \text { Phenylacetylene (} 1.2 \mathrm{mmol} \text {) } \quad=0.122 \mathrm{~g} \\
& \text { Catalyst: ZnO-CTAB } \quad=0.005 \mathrm{~g}
\end{aligned}
$$

Solvent: Water + ethylene glycol (3 ml) $=3 \mathrm{~g}$

Wash solvent (ethyl acetate + water, 2 ml$)=2 \mathrm{~g}$
Product: 1,4-disubstituted 1,2,3-triazoles $=0.232 \mathrm{~g}$

$$
\begin{gathered}
\text { E factor }=\frac{\text { mass used }- \text { mass recovered }}{\text { mass of product }} \\
\text { E factor }=\frac{(0.133+0.122+0.005+3+2)-(0.232+5)}{0.232} \\
E \text { factor }=0.12
\end{gathered}
$$

The calculated E-factor for the other triazoles are as follows (Scheme 2, Entry 3a-3g):

Entry	E-factor	Entry	E-factor
3 a	0.12	3 e	0.20
3 b	0.12	3 f	0.11
3 c	0.26	3 g	0.57

The calculated E-factor for the triazoles (Scheme 3, Entry 6a-6v) are as follows:

Entry	E-factor	Entry	E-factor
6 a	0.10	61	0.28
6b	0.39	6 m	0.08
6c	0.14	6 n	0.40
6d	0.13	6 o	0.20
6e	0.21	6 p	0.18
6f	0.13	6 q	0.08
6g	0.15	6 r	0.11
6h	0.15	6 s	0.11
6i	0.11	6 t	0.14
6j	0.19	6 u	0.09
6k	0.12	6 v	0.12

Procedure for the synthesis of \mathbf{N}-unsubstituted-1,2,3-triazoles (Scheme 5, entry 14a-14k)

The aromatic aldehyde (1 mmol), nitroalkane (2 mmol), sodium azide (3 mmol) and catalyst (5 mg) were stirred in a round-bottom flask containing 3 ml of DMSO solvent at $80{ }^{\circ} \mathrm{C}$. The progress of the reactions was checked by TLC. After completion of the reaction, the mixture was cooled to room temperature and extracted with ethyl acetate ($4 \times 10 \mathrm{ml}$). The filtrate was evaporated to dryness under reduced pressure. The final product was purified by column chromatography over silica gel using hexane/ethyl acetate mixture and the products obtained
were characterized by NMR and mass spectroscopy. The recovered catalyst was washed with hot ethanol, dried and reused.

E-factor calculation for the synthesis of \mathbf{N}-unsubstituted 1,2,3-triazoles (Scheme 5, entry 14k):

Substrate: Benzaldehyde $(1 \mathrm{mmol})$	$=0.106 \mathrm{~g}$
Nitromethane $(2 \mathrm{mmol})$	$=0.122 \mathrm{~g}$
Sodium azide $(3 \mathrm{mmol})$	$=0.195 \mathrm{~g}$
Catalyst: ZnO-CTAB	$=0.005 \mathrm{~g}$
Solvent: \quad DMSO $(3 \mathrm{ml})$	$=3 \mathrm{~g}$

Wash solvent (ethyl acetate + water, 2 ml$)=2 \mathrm{~g}$
Product: N-unsubstituted 1,2,3-triazoles $=0.232 \mathrm{~g}$

$$
\begin{gathered}
\text { E factor }=\frac{\text { mass used }- \text { mass recovered }}{\text { mass of product }} \\
E \text { factor }=\frac{(0.106+0.122+0.195+0.005+3+2)-(0.123+5)}{0.123} \\
\text { E factor }=2.40
\end{gathered}
$$

The calculated E-factor for the other N -unsubstituted 1,2,3-triazoles are as follows:

Entry	E-factor	Entry	E-factor
14 a	1.75	14 f	1.40
14 b	2.20	14 g	2.84
14 c	2.42	14 h	2.32
14 d	1.61	14 i	2.37
14 e	1.39	14 j	2.40

Procedure for the synthesis of 1,4-disubstituted 1,2,3-triazoles-One-Pot method (Scheme 4, entry 9a-9h)

In this case, benzyl bromide (1 mmol), sodium azide (2 mmol) and phenyl acetylene (1.2 mmol) are added simultaneously to a solution of water-ethylene glycol ($6: 1.3 \mathrm{ml}$) with the catalyst (5 mg) and reacted at $60{ }^{\circ} \mathrm{C}$ for 3-4 h . The product obtained was then extracted with ethylacetate and purified using column chromatography. The final products were characterized by NMR and mass spectroscopy.

E-factor calculation (Scheme 4, entry 9b)

Substrate: 4-Bromobenzylbromide $(1 \mathrm{mmol}) \quad=0.249 \mathrm{~g}$

$$
\text { Phenylacetylene }(1.2 \mathrm{mmol}) \quad=0.121 \mathrm{~g}
$$

$$
\text { Sodium azide }(2 \mathrm{mmol}) \quad=0.130 \mathrm{~g}
$$

Catalyst: ZnO-CTAB $\quad=0.005 \mathrm{~g}$
Solvent: Water + ethylene glycol $(3 \mathrm{ml}) \quad=3 \mathrm{~g}$

$$
\text { Wash solvent (ethyl acetate }+ \text { water, } 2 \mathrm{ml} \text {) } \quad=2 \mathrm{~g}
$$

Product: 1,4-disubstituted 1,2,3-triazoles $\quad=0.267 \mathrm{~g}$

$$
\begin{gathered}
\text { E factor }=\frac{\text { mass used }- \text { mass recovered }}{\text { mass of product }} \\
\text { E factor }=\frac{(0.249+0.121+0.130+0.005+3+2)-(0.267+5)}{0.267} \\
\text { E factor }=0.89
\end{gathered}
$$

The calculated E-factor for the other triazoles are as follows:

Entry	E-factor	Entry	E-factor
9 a	0.97	9 e	1.27
9 b	0.89	9 f	0.99
9 c	1.13	9 g	0.82
9 d	0.70	9 h	1.24

The calculated E-factor of the other 1,4,5-trisubstituted 1,2,3-triazole derivatives (Scheme 6, Entry 17a-17c) are as follows:

Entry	E-factor	Entry	E-factor
17 a	0.18	17 c	0.21
17 b	0.22		

4.3 Eco-Scale

The eco-scale of the above protocol has been calculated using Van-Aken et.al. quantitative tool. On the basis of this analytical score, the greenness of the methodology can be determined. For, eco-score above 75 are considered excellent green methods, above 50 acceptable green methods and below 50 as inadequate greenness. (Ref: S5)

Serial no.	Parameter	Values	Penalty points (Scheme
$\mathbf{1}$	Yield	$(100-99) / 2=0.5$	$0.3,4,5 \& 6)$
$\mathbf{2}$	Price of reaction component	Inexpensive	0
$\mathbf{3}$	Safety	Non-toxic	0
$\mathbf{4}$	Technical setup	Common setup	0
$\mathbf{5}$	Temperature	Heating, >1h	3
$\mathbf{6}$	Workup and purification	Extraction with AcOEt	3
		Silica gel column chromatography	10

$$
\begin{aligned}
\text { Eco-scale } & =100-\text { sum of individual penalties } \\
& =100-16.5 \\
& =83.5
\end{aligned}
$$

As per the above results, it can be concluded that theses ZnAAC reactions have a low E-factor, high atom-economy and high eco-scale value. These values clearly indicate the eco-friendliness of the present work.

5. Single Crystal XRD Studies:

The single crystal data collections were carried out using a Bruker D-8 Quest diffractometer with a photon detector (Mo K $\alpha: 0.71073 \AA$, monochromator: graphite). Frames were collected at room temperature by ω, φ, and 2θ rotation at 3 s per frame. The SAINT software was used to integrate the measured intensities. Structure solution, refinement and data output were carried out using the inbuilt SHELXTL-2018 program. Non-hydrogen atoms were refined anisotropically. $\mathrm{C}-\mathrm{H}$ hydrogen atoms were placed in geometrically calculated positions by using a riding model. Images were created by using the ORTEP program.

Crystal data and structure refinements for the crystals are summarized below:
For H1: $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{Cl}, \mathrm{Mr}=269.73$, monoclinic, space group $\mathrm{P} 21 / \mathrm{c}, \mathrm{a}=5.6930(6), \mathrm{b}=8.6279(9)$, $\mathrm{c}=26.812(3) \AA, \alpha=90, \beta=90.943(3), \gamma=90^{\circ}, \mathrm{V}=1316.8(2) \AA^{3}, \mathrm{Z}=4, \mathrm{D}_{\text {calc }}=1.361 \mathrm{~g} \mathrm{~cm}^{-3}, \mu$ $=0.278 \mathrm{~mm}^{-1}, \mathrm{~T}=297(2) \mathrm{K}$, total of 29359 collected reflections, 2002 unique reflections $\left(\mathrm{R}_{\text {int }}=\right.$ 0.0271), 2305 observed reflections $[\mathrm{I}>2 \mathrm{r}(\mathrm{I})], \mathrm{R}_{1}(\mathrm{obs})=0.0412$, $\mathrm{wR}_{1}(\mathrm{obs})=0.1253, \mathrm{R}_{2}($ all $)=$ $0.0486, \mathrm{wR}_{2}($ all $)=0.1405 . \mathrm{CCDC}=1028453$

Figure S2: Ortep diagram of H1 (thermal ellipsoid with 30\% probability)

6. Characterization datas of 1,2,3-triazole derivatives

1-benzyl-4-phenyl-1H-1,2,3-triazole (Scheme 3, Entry 3a) Ref: S1

White solid, MS (ESI) m/z: $236.25[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 7.80(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~s}$, $1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 54.3,119.6,125.8,128.2,128.3$, 128.9, 129.3, 130.6, 134.8, 148.3.

1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazole (Scheme 2, entry 3b) Ref: S2

Light yellow Solid; MS (ESI) m/z: $315.21[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 7.81(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H})$, $7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 53.4,119.4,125.6,128.2,128.7,128.8$, 129.0, 129.6, 131.9, 132.2, 133.2, 133.6, 134.3, 148.3.

1-(4-chlorobenzyl)-4-phenyl-1H-1,2,3-triazole (Scheme 2, entry 3d) Ref: S4

Yellow Solid; MS (ESI) m/z: $271.10[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~S}, 1 \mathrm{H})$, $7.46-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $5.53(\mathrm{~s}, 2 \mathrm{H})$.

1-benzyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole (Scheme 2, entry 3e)

Pale yellow Solid; MS (ESI) m/z: $304.15[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 7.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H})$, $7.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.67 (s, 2H).
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 53.6,119.5,122.7,124.9,125.8,126.1$, $126.2,126.2,126.2,128.2,128.4,128.9,130.3,131.0,138.7,148.6$.

1-(3,5-bis((3,5-dimethox ybenzyl)oxy)benzyl)-4-phenyl-1H-1,2,3-triazole (Scheme 2, entry 3g)

White solid; MS (ESI) m/z: $568.20[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 7.82(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ $7.72(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{dt}, J=$ $16.4,7.9 \mathrm{~Hz}, 5 \mathrm{H}), 7.28(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 2 \mathrm{H}), 6.44$ (s, $1 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=31.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.82(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 55.4,61.7,70.1,102.2,105.2$, 107.3, 125.8, 127.6, 128.9, 131.0, 136.8, 138.8, 160.4, 161.0.

3-(1-benzyl-1H-1,2,3-triazol-4-yl)aniline (Scheme 3, entry 6b)

Yellow Solid, MS (ESI) m/z: $251.19[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}: 7.63$ ($\mathrm{s}, 1 \mathrm{H}$), 7.34 ($\mathrm{s}, 5 \mathrm{H}$), 7.19 (s , $1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.50 (s, 2H), 4.49 (s, 2H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 54.1,112.2,115.8,119.9,127.6$, 128.1, 128.2, 129.8, 129.9, 130.6, 131.3, 131.4, 134.8, 147.1, 148.3.

3-(1-(2,4-dichlorobenzyl)-1H-1,2,3-triazol-4-yl)aniline (Scheme 3, entry 6c)

Yellow solid; MS (ESI) m/z: $320.12[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $10.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=22.6,10.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.62(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.56 (s, 2H), 4.88 (s, 2H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 50.8,112.4,115.4,116.1,120.3$, 128.0, 129.7, 129.9, 131.1, 131.3, 134.1, 135.4, 146.7, 148.1.

1-benzyl-4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazole (Scheme 3, Entry 6d)

White solid, MS (ESI) m/z: $372.23[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}: 7.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~s}$, $1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 53.6,119.5,122.7,124.9,125.8$, $126.1,126.2,126.2,126.2,128.2,128.4,128.9,130.3,131.0$, 138.7, 148.6 .

1-(4-chlorobenzyl)-4-(thiophen-3-yl)-1H-1,2,3-triazole (Scheme 3, entry 6e)

Yellow Solid; MS (ESI) m/z: $277.05[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta :} 7.67(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H})$, $7.43(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $_{3}$) $\boldsymbol{\delta}: 53.4,119.4,121.3,125.8,125.8,126.5$, 129.4, 131.6, 133.2, 134.8, 144.6 .

3-(1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)aniline (Scheme 3, entry 6g)

White Solid; MS (ESI) m/z: $286.12[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $7.21(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 54.3,112.4,115.2,116.1,119.9$, 128.2, 128.2, 128.9, 129.3, 129.9, 131.5, 134.9, 147.1, 148.4.

1-(4-chlorobenzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazole (Scheme 3, entry 6h)

White solid, MS (ESI) m/z: $288.07[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta} 7.76(\mathrm{dd}, J=8.6,5.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $_{3}$) $\boldsymbol{\delta} 162.8(\mathrm{~d}, J=247.8 \mathrm{~Hz})$, $161.9,147.6,135.0,133.2,129.4,127.5(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 126.7$, $126.7,119.2,115.9(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 53.5$.
${ }^{19}$ F NMR (470 MHz, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}:-106.57$.

1-benzyl-4-(p-tolyl)-1H-1,2,3-triazole (Scheme 3, entry 6i) Ref: S4

Pale yellow solid; MS (ESI) m/z: $329.19[\mathrm{M}+\mathrm{H}]^{+}$

${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 7.70(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}$, $1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=226.1,8.2 \mathrm{~Hz}, 7 \mathrm{H})$, 5.49 ($\mathrm{s}, 2 \mathrm{H}$), 2.36 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 21.3,53.4,119.3,122.9,125.6$, 127.6, 128.7, 128.9, 129.6, 129.7, 132.0, 132.2, 133.9, 134.61, 138.1, 139.9, 148.4.

1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (Scheme 3, Entry 6j) Ref: S4

White solid, MS (ESI) m/z: $266.09[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}: 7.75$ (d, 2H), 7.61 ($\mathrm{s}, 1 \mathrm{H}$), 7.37-7.40 (m, 3H), 7.31-7.33 (d, 2H), 6.95 (d, 2H), 7.31 (s, 2H), 3.84 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 54.1,55.2,114.1,118.7,123.2,126.9$, 128.0, 128.3, 129.1, 134.7, 148.1.
(1-benzyl-1H-1,2,3-triazol-4-yl)methanol (Scheme 3, entry 6l)

MS (ESI) m/z: $190.10[\mathrm{M}+\mathrm{H}]^{+}$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}: 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=5.1,1.8$ $\mathrm{Hz}, 4 \mathrm{H}), 7.26(\mathrm{t}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H})$.

4-(((6-bromonaphthalen-2-yl)oxy)methyl)-1-(4-chlorobenzyl)-1H-1,2,3-triazole (Scheme 3, entry 6m)

Light yellow Solid; MS (ESI) m/z: $427.12[\mathrm{M}+\mathrm{H}]^{+}$

${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.56(\mathrm{~m}, 3 \mathrm{H})$, $7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 4 \mathrm{H})$, $5.51(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}$, CDCl $_{3}$) $\boldsymbol{\delta}: 53.5,62.1,107.3,117.5,119.8$, 122.7, 128.6, 128.7, 129.4, 129.5, 129.6, 129.8, 130.2, 132.9, $132.9,134.9,144.5,156.4$.

Ethyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate (Scheme 3, entry 6o)
MS (ESI) m/z: $232.16[\mathrm{M}+\mathrm{H}]^{+}$
 $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 14.2,54.4,61.2,76.7,76.9,77.2$, 127.3, 128.2, 129.1, 129.2, 133.6, 140.5, 160.6.

1-(4-bromobenzyl)-4-((4-iodophenoxy)methyl)-1H-1,2,3-triazole (Scheme 3, entry 6p)

Yellow solid, MS (ESI) m/z: $470.80[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}: 7.62-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 53.6,62.1,83.6,117.2,122.7$, 123.1, 129.7, 132.4, 133.4, 138.3, 144.4, 158.0.

1-(4-bromobenzyl)-4-((4-chloro-2-nitrophenoxy)methyl)-1H-1,2,3-triazole (Scheme 3, entry 6s)

Yellow Solid; MS (ESI) m/z: 421.83[M+H] ${ }^{+}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 7.82(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}$, $1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $5.50(\mathrm{~s}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 53.7,64.0,116.9,123.3,125.6$, 126.2, 129.7, 132.4, 133.4, 134.1, 143.3, 150.2.

1-benzyl-4-((4-iodophenoxy)methyl)-1H-1,2,3-triazole (Scheme 3, entry 6t)

White Solid, MS (ESI) m/z: $392.14[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}: 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}$, $1 \mathrm{H}), 7.30(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 5.46 (s, 2H), 5.08 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 54.3,62.1,83.5,117.2,122.6$, 127.1, 128.1, 128.9, 129.2, 134.4, 138.3, 144.2, 158.1.

1-(2-bromobenzyl)-4-(4-(tert-butyl)phenyl)-1H-1,2,3-triazole (Scheme 3, entry 6u)

White solid; MS (ESI) m/z: $371.12[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 7.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H}), 1.36(\mathrm{~s}$, 9H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 31.3,34.7,53.9,119.7,123.4$, $125.5,125.8,127.6,128.3,130.2,130.4,133.2,134.4,148.2,151.4$.

4-((1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)-3-methoxybenzaldehyde (Scheme 3, entry 6v)

Yellow Semi-liquid; MS (ESI) m/z: $359.19[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.41-$ 7.31 (m, 3H), 7.18 (q, $J=8.7,8.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.47$ (s, 2H), 5.31 (s, $2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 53.5,56.0,62.7,109.3,112.5$, $123.3,129.1,129.3,129.5,130.6,132.8,134.9,143.7,149.9,153.0$, 191.1.

4-(4-chlorophenyl)-1H-1,2,3-triazole (Scheme 5, entry 14a) (Ref: 29)

Yellow solid, MS (ESI) m/z: $180.03[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 127.3,129.0,129.2,129.8,130.0$, 155.9

4-(4-fluorophenyl)-1H-1,2,3-triazole (Scheme 5, entry 14b)

White solid, MS (ESI) m/z: $164.03[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}: 8.43$ ($\mathrm{s}, 1 \mathrm{H}$), 7.95 ($\mathrm{s}, 1 \mathrm{H}$), 7.72 (s , 2H), 7.27 (s, 2H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 117.0(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 126.0,129.7$, $129.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 142.81,163.9,164.9(\mathrm{~d}, J=250.0 \mathrm{~Hz})$.
${ }^{19}$ F NMR (470 MHz, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}:-109.88$.

Dark Red, MS (ESI) m/z: $160.11[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}: 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$: 21.3, 126.1, 126.9, 128.6, 129.7, 138.7, 146.7

4-(2-chloro-6-fluorophenyl)-1H-1,2,3-triazole (Scheme 5, entry 14d)

Pale yellow solid, MS (ESI) m/z: $198.02[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\mathbf{\delta :} 12.56(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.33-$ 6.99 ($\mathrm{m}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 160.6(\mathrm{~d}, J=252.0 \mathrm{~Hz}), 159.6,136.7$, $134.5,134.4,130.5(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 130.5,126.0,125.9(\mathrm{~d}, J=3.4 \mathrm{~Hz})$, $117.8(\mathrm{~d}, J=16.9 \mathrm{~Hz}), 114.6(\mathrm{~d}, J=22.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR (470 MHz, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}:-109.76$.

4-(4-bromophenyl)-1H-1,2,3-triazole (Scheme 5, entry 14e) (Ref: 29)

Yellow solid, MS (ESI) m/z: $223.90[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 76.8,77.1,77.3,127.6,128.8,129.2$, 132.1, 175.3, 175.8.

4-(2,4-dichlorophenyl)-1H-1,2,3-triazole (Scheme 5, entry 14f)

Yellow solid, MS (ESI) m/z: $213.91[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 10.29(\mathrm{~s}, 1 \mathrm{H}) 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}: 127.4,129.1,129.5,130.0,130.7$, 130.9.

4-(anthracen-9-yl)-1H-1,2,3-triazole (Scheme 5, entry 14g)

Light yellow, MS (ESI) m/z: $256.05[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 9.7(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.37$ ($\mathrm{d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.07 (s, 1H), 7.95 (d, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.67$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 111.3,112.1,118.7,118.9,126.6$, 127.1, 132.4, 132.9, 134.6, 146.2.

4-(thiophen-2-yl)-1H-1,2,3-triazole (Scheme 5, entry 14h)
Brown solid, MS (ESI) m/z: $152.23[\mathrm{M}+\mathrm{H}]^{+}$

${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}: 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) 125.2, 125.9, 127.8, 132.0, 142.2, 155.9

4-(furan-2-yl)-1H-1,2,3-triazole (Scheme 5, entry 14i)

Pale yellow, MS (ESI) m/z: $138.18[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.35(\mathrm{t}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 108.0,111.6,113.1,139.5,142.6$, 155.3.

Dimethyl 1-(4-chlorobenzyl)-1H-1,2,3-triazole-4,5-dicarboxylate (Scheme 6, entry 17a)

White solid; MS (ESI) m/z: $311.19[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta}: 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 52.8,53.2,53.2,53.4,123.0$, $128.8,129.1,129.4,129.5,129.8,131.0,133.0,132.5,133.0$, 134.8, 140.4, 158.7, 160.4.

1-(4-chlorobenzyl)-4,5-diphenyl-1H-1,2,3-triazole (Scheme 6, entry 17c)

White Solid; MS (ESI) m/z: $347.16[\mathrm{M}+\mathrm{H}]^{+}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ $(\mathrm{d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 2 H), 5.38 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 51.4,126.7,127.8,128.5,129.3$, 129.3, 129.9, 130.1, 130.7, 131.9, 134.3.

7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of triazoles derivatives:

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1-benzyl-4-phenyl-1H-1,2,3-triazole (Scheme 3, Entry 3a) respectively. Ref: S1

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazole (Scheme 2, Entry 3b) respectively. Ref: S2

${ }^{1} \mathrm{H}$ NMR spectra of 1-(4-chlorobenzyl)-4-phenyl-1H-1,2,3-triazole (Scheme 2, Entry 3d) Ref: S4 and (1-benzyl-1H-1,2,3-triazol-4-yl)methanol (Scheme 3, entry 61) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1-benzyl-4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazole (Scheme 2, entry 3e) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1-(3,5-bis((3,5-dimethoxybenzyl)oxy)benzyl)-4-phenyl-1H-1,2,3-triazole (Scheme 2, Entry 3g) respectively

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 3-(1-benzyl-1H-1,2,3-triazol-4-yl)aniline (Scheme 3, Entry 6b) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 3-(1-(2,4-dichlorobenzyl)-1H-1,2,3-triazol-4-yl)aniline (Scheme 3, Entry 6c) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1-benzyl-4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazole (Scheme 3, Entry 6d) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1-(4-chlorobenzyl)-4-(thiophen-3-yl)-1H-1,2,3-triazole (Scheme 3, Entry 6e) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 3-(1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)aniline (Scheme 3, Entry $\mathbf{6 g}$) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of 1-(4-chlorobenzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazole (Scheme 3, entry 6 h) respectively.

${ }^{19}$ F NMR spectra of 1-(4-chlorobenzyl)-4-(4-fluorophenyl)-1H-1,2,3-triazole (Scheme 3, entry 6h).

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1-(4-bromobenzyl)-4-(p-tolyl)-1H-1,2,3-triazole (Scheme 3, entry 6i) respectively. Ref: S4

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (Scheme 3, Entry $\mathbf{6 j}$) respectively. Ref: S4

${ }^{1}$ H NMR spectra of 1-(4-chlorobenzyl)-4-phenyl-1H-1,2,3-triazole (Scheme 2, Entry 3d) and (1-benzyl-1H-1,2,3-triazol-4-yl)methanol (Scheme 3, entry 61) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 4-(((6-bromonaphthalen-2-yl)oxy)methyl)-1-(4-chlorobenzyl)-1H-1,2,3-triazole (Scheme 3, Entry $\mathbf{6 m}$) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of ethyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate (Scheme 3, Entry 6o) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1-(4-bromobenzyl)-4-((4-iodophenoxy)methyl)-1H-1,2,3triazole (Scheme 3, Entry 6p) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1-(4-bromobenzyl)-4-((4-chloro-2-nitrophenoxy)methyl)-1H-1,2,3-triazole (Scheme 3, Entry 6s) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1-(2-bromobenzyl)-4-(4-(tert-butyl)phenyl)-1H-1,2,3-triazole (Scheme 3, Entry 6u) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 4-((1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)-3methoxybenzaldehyde (Scheme 3, Entry 6v) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 4-(4-chlorophenyl)-1H-1,2,3-triazole (Scheme 5, Entry 14a) respectively. (Ref: 29)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 4-(4-fluorophenyl)-1H-1,2,3-triazole (Scheme 5, Entry 14b) respectively.

${ }^{19}$ F NMR spectra 4-(4-fluorophenyl)-1H-1,2,3-triazole (Scheme 5, entry 14b)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 4-(p-tolyl)-1H-1,2,3-triazole (Scheme 5, Entry 14c) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 4-(2-chloro-6-fluorophenyl)-1H-1,2,3-triazole (Scheme 5, Entry 14d) respectively.

${ }^{19}$ F NMR spectra of of 4-(2-chloro-6-fluorophenyl)-1H-1,2,3-triazole (Scheme 5, entry 14d)

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 4-(4-bromophenyl)-1H-1,2,3-triazole (Scheme 5, Entry 14e) respectively. (Ref: 29)

${ }^{1} \mathrm{H}$ NMR and C NMR spectra of 4-(2,4-dichlorophenyl)-1H-1,2,3-triazole (Scheme 5, Entry 14f) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 4-(anthracen-9-yl)-1H-1,2,3-triazole (Scheme 5, Entry 14g) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 4-(thiophen-2-yl)-1H-1,2,3-triazole (Scheme 5, Entry 14h) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 4-(furan-2-yl)-1H-1,2,3-triazole (Scheme 5, Entry 14i) respectively.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of dimethyl 1-(4-chlorobenzyl)-1H-1,2,3-triazole-4,5dicarboxylate (Scheme 6, Entry 17a) respectively.
(

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 1-(4-bromobenzyl)-4,5-diphenyl-1H-1,2,3-triazole (Scheme 6, Entry 17c) respectively.

References

S1. S. Chassaing, M. Kumarraja, A. S. S. Sani, P. Pale, and J. Sommer, Org. Lett. 2007, 9, 883-886.

S2. J. -G.Wu, X. -J. Liao, L. Yuan, Y. Wang, Y. X. Zheng, J. L. Zuo and Y. Pan, Chem. Eur. J. 2020, 26, 5694-5700.

S3. S4. R., Jahanshahi, and B. Akhlaghinia. RSC Advances, 2016, 6, 29210-29219.
S4. S4. K. V. Aken, L. Strekowski and L. Patiny. Beilstein J. Org. Chem., 2006, 2, 3.

CHECK CIF REPORT:

Datablock: H_a

Bond precision	on: $\quad C-C=0.0026 \mathrm{~A}$	Wavelength=0.71073
Cell: $\quad \mathrm{a}=5$	$\mathrm{a}=5.6930(6) \quad \mathrm{b}=8.6279$ (9)	$\mathrm{c}=26.812$ (3)
	alpha=90 beta=90.943(3)	gamma=90
Temperature:297 K		
	Calculated	Reported
Volume	1316.8(2)	1316.8(2)
Space group	P 21/c	P 21/c
Hall group	-P 2ybc	-P 2ybc
Moiety formula	la C15 H12 Cl N3	?
Sum formula	C15 H12 Cl N3	C15 H12 Cl N3
Mr	269.73	269.73
Dx,g cm-3	1.361	1.361
Z	4	4
Mu (mm-1)	0.278	0.278
F000	560.0	560.0
F000'	560.75	
h, k, lmax	6,10,31	6,10,31
Nref	2317	2305
Tmin, Tmax	$0.954,0.978$	
Tmin'	0.951	
Correction method= Not given		
Data completeness $=0.995 \quad$ Theta $(\max)=24.985$		
$\mathrm{R}($ reflections $)=0.0412(2002)$		$\begin{aligned} & \text { wR2 }(\text { reflections })= \\ & 0.1405(2305) \end{aligned}$
$S=0.880$	Npar= 172	

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

```
Alert level C
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.594 11 Report
    -1 1 1, 0 2 1, 2 0 2, -1 1 3, 0 2 3, -1 0 4,
    -1 1 4, 1 1 4, 0 2 4, 0 2 5, 0 0 8,
PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 7 Note
    -1 1 1, 2 0 2, 0 2 3, -1 1 4, 1 1 4, 0 2 4,
    O 2 5,
```


Alert level G

```
PLAT883 ALERT 1 G No Info/Value for _atom_sites_solution_primary . Please Do! PLAT899 ALERT 4 G SHELXL2018 is Deprecated and Succeeded by SHELXL 2019/3 Note PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still 75\% Note PLAT910 ALERT 3 G Missing \# of FCF Reflection(s) Below Theta(Min). 1 Note
```

002,
PLAT965 ALERT 2 G The SHELXL WEIGHT Optimisation has not Converged Please Check PLAT967 ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res .. 50.0 Degree PLAT969 ALERT 5 G The 'Henn et al.' R-Factor-gap value \qquad
Predicted wR2: Based on SigI**2 1.45 or SHELX Weight 16.60
PLAT978_ALERT_2 G Number C-C Bonds with Positive Residual Density.

0 ALERT level $\mathbf{A}=$ Most likely a serious problem - resolve or explain
0 ALERT level $B=A$ potentially serious problem, consider carefully
2 ALERT level C = Check. Ensure it is not caused by an omission or oversight
8 ALERT level $\mathbf{G}=$ General information/check it is not something unexpected

1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check

PLATON version of 06/01/2024; check.def file version of 05/01/2024
Datablock H_a - ellipsoid plot

