Supporting Information

Enhancing H₂ yield from photoreforming of natural lignocellulose feedstock by two-stage thermo-alkaline hydrolysis pretreatment

Wei Wang^{1, 3}, Zhenyu Jin¹, Binhai Cheng^{1, 4*}, Ming Zhao^{1, 2*}

¹ School of Environment, Tsinghua University, Beijing 100084, China.

² Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215263,

China.

³ Huaneng Clean Energy Research Institute, Beijing, 102209, China

⁴ School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China

Submitted to **RSC Sustainability**

* Corresponding Author

Email: ming.zhao@mail.tsinghua.edu.cn

bhcheng1@mail.ustc.edu.cn (Binhai Cheng)

Phone: (+86) 010-62784701

Materials and methods

1.1 Catalyst synthesis.

SrTiO₃-0.5 wt.%Pt were synthesized following a previous report[1, 2]. In a typical synthesis, 1000 mg of SrTiO₃ and 250 ml deionized water were added into a 500 ml beaker with. After ultrasonic 20 min, 125 μ l H₂PtCl₈ solution was dropwise added into the beaker and stirred for 30 min. The solution was then stirred and dried at 80 °C. Finally, the samples were calcined in air at 500 °C for 3 h to remove the residual chlorine. It was then cooled naturally to room temperature.

1.2 Ion chromatography analysis.

Organic acids in TAH/TS-TAH of natural lignocellulose waste were tested by Ion chromatography with gradient elution method[1]. The column temperature and flow rate were set to 35 °C and 1 ml/min respectively.

1.3 Gas chromatography-mass spectrometry analysis.

Other components in TAH/TS-TAH of natural lignocellulose feedstock were analyzed by gas chromatography-mass spectrometry (GC-MS, Agilent 7890A-5975C, USA)[1]. The carrier gas was He and the GC column oven was 45 °C holding for 5 min. Then the column temperature was raised to 250 °C at a rate of 5 °C/min. All samples were extracted with dichloromethane before tested.

Supporting Figures

Fig. S1 TAH-AS of natural lignocellulose waste.

The calculation of carbon balance

In the calculation, the chemical formulas of cellulose, hemicellulose and lignin are

$$(C_6H_{10}O_5)_n$$
, $(C_5H_8O_4)_n$, $(C_{81}H_{92}O_{28})_n$. The relevant formulas are shown below.

$$C_{cellulose} = \frac{M_C \times 6}{M_C \times 6 + M_H \times 10 + M_0 \times 5}$$

$$C_{hemicellulose} = \frac{M_C \times 5}{M_C \times 5 + M_H \times 8 + M_0 \times 4}$$

$$C_{cellulose} = \frac{M_C \times 81}{M_C \times 81 + M_H \times 92 + M_0 \times 28}$$

$$C_{lactic} = \frac{M_C \times 3}{M_C \times 3 + M_H \times 6 + M_0 \times 3}$$

$$C_{acetic} = \frac{M_C \times 2}{M_C \times 2 + M_H \times 4 + M_0 \times 2}$$

$$C_{propionic} = \frac{M_C \times 3}{M_C \times 3 + M_H \times 5 + M_0 \times 2}$$

$$C_{formic} = \frac{M_C \times 1}{M_C \times 1 + M_H \times 2 + M_0 \times 2}$$

$$C_{tartaric} = \frac{M_C \times 4}{M_C \times 4 + M_H \times 6 + M_0 \times 6}$$

$$C_{oxalic} = \frac{M_C \times 2}{M_C \times 2 + M_H \times 2 + M_0 \times 4}$$

In the formulas, CX means the content of element C in certain substance X. Natural lignocellulose feedstocks were fixed at 8,000 mg/L in the research. We could calculate the amount of element C in natural lignocellulose feedstocks since the proportion of cellulose, hemicellulose and lignin were given. We could also calculate the element C in small-molecule acid. Then we could verify the carbon balance between natural lignocellulose feedstocks and small-molecule acid.

Fig. S2 Fate of element C in rice straw.

Fig. S3 Fate of element C in wheat straw.

Fig. S4 Fate of element C in corn straw.

Fig. S5 Fate of element C in soybean straw.

Fig. S6 Fate of element C in reed straw.

Fig. S7 Fate of element C in pine.

Fig.S8 (a)customized photoreactor;(b)customized reaction bulb;(c)Micro GC

Supporting Tables

Samples	C (wt.%)	H (wt.%)	O (wt.%)	N (wt.%)	S (wt.%)	Si (wt.%)	Total (%)
rice straw	38.75	5.31	38.23	0.82	0.10	6.43	89.64
wheat straw	42.11	5.50	41.27	0.78	0.13	2.13	91.92
corn straw	41.81	5.64	42.20	1.17	0.12	2.43	93.37
soybean straw	41.94	5.59	39.89	1.17	0.13	0.79	89.51
reed straw	43.60	5.69	37.90	2.06	0.19	1.98	91.42
pine	46.92	5.99	42.55	0.21	0.02	0.70	96.39

Table S1 Elemental analysis of natural lignocellulose waste

Samples	Moisture (wt%.)	Ash (wt.%)	Volatiles (wt.%)	Fixed carbon (wt.%)
rice straw	7.38	11.87	63.32	17.44
wheat straw	7.18	5.15	68.37	19.30
corn straw	7.15	6.87	66.78	19.20
soybean straw	8.29	3.83	69.80	18.09
reed straw	6.55	7.66	67.65	18.14
pine	7.23	0.11	74.68	17.99

 Table S2 Industrial analysis of natural lignocellulose waste

			Area Pct
TAH	Detected Species	Molecular Formula	(%)
	Undecane	$C_{11}H_{24}$	34.89
. ,	6-ethyloct-3-yl-propyl ester- Oxalic acid	$C_{15}H_{28}O_4$	10.58
rice straw	2-cyano-Acetamide	$C_3H_4N_2O$	6.62
	4-aminocarbonyl-methyl ester- Benzoic acid	$C_9H_9NO_3$	6.02
	2,3,4-trimethyl-Hexane	$C_{9}H_{20}$	33.96
	2-methyl-Decane	$C_{11}H_{24}$	6.68
wheat straw	5-Aminoisoxazole	$C_3H_4N_2O$	6.10
	2-ethyl-1-methyl-Pyrrolidine	$C_7H_{15}N$	5.30
	Piperidine	$C_5H_{11}N$	3.93
	Undecane	$C_{11}H_{24}$	28.08
	Octacosane	$C_{28}H_{58}$	11.93
corn straw	2-Propenamide	C ₃ H ₅ NO	6.59
	2,4,4-trimethyl-Hexane	$C_{9}H_{20}$	4.65
	ethyl-1-methyl-Pyrrolidine	$C_7H_{15}N$	4.18
	2-methyl-Octane	$C_{9}H_{20}$	32.23
	Heptadecane	$C_{17}H_{36}$	11.06
soybean straw	3-ethylhexane	C_8H_{16}	7.03
	hexyl pentyl ester-Sulfurous acid	$C_{11}H_{24}O_{3}S$	5.78
	2-ethyl-2-methyl-Oxazolidine	C ₆ H ₁₃ NO	4.59
	1,8-Nonadien-3-ol	$C_9H_{16}O$	28.51
reed straw	3-methyl-5-propyl-Nonane	$C_{13}H_{28}$	11.00
	Piperazine	$C_4H_{10}N_2$	9.11
	Undecane	$C_{11}H_{24}$	25.94
	2,3,6-trimethyl-Decane	$C_{13}H_{28}$	12.79
	2,3-dimethoxy-Benzamide	$C_9H_{11}NO_3$	10.83
pine	5,6-dimethyl-Decane	$C_{12}H_{26}$	6.33
	2,6-Dimethyldecane	$C_{12}H_{26}$	5.67
	3,4,5,6-tetramethyl-Octane	$C_{12}H_{26}$	5.21

Table S3 Distribution of main organic products in TAH solution of natural

lignocellulose wastes

Table S4 Distribution of organic products in TAH-AS of natural lignocellulose

	wastes		
TAH- AS	Detected Species	Molecular Formula	Area Pct (%)
	1,3-bis(1,1-dimethylethyl)-Benzene	$C_{14}H_{22}$	9.46
	2,4-bis(1,1-dimethylethyl)-Phenol	$C_{14}H_{22}O$	4.52
straw	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	3.16
	1,3-bis(1-methylethenyl)-Benzene	$C_{12}H_{14}$	2.67
	2,4-bis(1,1-dimethylethyl)-Phenol	$\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{O}$	12.2 4
wheat	1,3-bis(1,1-dimethylethyl)-Benzene	$\mathrm{C}_{14}\mathrm{H}_{22}$	3.95
straw	2,4,6-trimethyl-Decane	$C_{13}H_{28}$	2.20
	2,6,10-trimethyl-Tetradecane	$C_{17}H_{36}$	1.59
corn straw	1,3-bis(1,1-dimethylethyl)-Benzene	$C_{14}H_{22}$	12.5 2
	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	5.81
	2,4-bis(1,1-dimethylethyl)-Phenol	$C_{14}H_{22}O$	3.74
	Eicosane	$C_{20}H_{42}$	1.12
	1,3-bis(1,1-dimethylethyl)-Benzene	$C_{14}H_{22}$	12.6 3
soybea	2,4-bis(1,1-dimethylethyl)-Phenol	$\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{O}$	6.05
n straw	Eicosane	$C_{20}H_{42}$	4.54
	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	1.95
	2,4-bis(1,1-dimethylethyl)-Phenol	$\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{O}$	10.9 2
rood	1,3-bis(1,1-dimethylethyl)-Benzene	$\mathrm{C}_{14}\mathrm{H}_{22}$	5.02
straw	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	4.98
	Cyclohexasiloxane dodecamethyl	$C_{12}H_{36}O_6S$ i_6	2.20
	1,3-bis(1,1-dimethylethyl)-Benzene	C ₁₄ H ₂₂	12.5 6
pine	2,4-bis(1,1-dimethylethyl)-Phenol	$C_{14}H_{22}O$	5.77
	Eicosane	$C_{20}H_{42}$	5.32

2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	1.89

TS- TAH	Detected Species	Molecula r Formula	Area Pct(%)
	3-ethyl-Hexane	C_8H_{16}	38.23
rice	Butylated Hydroxytoluene	$\mathrm{C_{15}H_{24}O}$	27.03
straw	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	13.11
	Octane	C_8H_{18}	49.05
wheat	Butylated Hydroxytoluene	$C_{15}H_{24}O$	18.04
straw	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	8.21
corn straw	Octane	C_8H_{18}	56.42
	Butylated Hydroxytoluene	$\mathrm{C_{15}H_{24}O}$	36.42
	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	5.32
	Octane	C_8H_{18}	40.10
soybean	Butylated Hydroxytoluene	$\mathrm{C_{15}H_{24}O}$	26.64
straw	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	18.79
	Octane	C_8H_{18}	53.56
reed	Butylated Hydroxytoluene	$C_{15}H_{24}O$	33.23
straw	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	7.00
	Butylated Hydroxytoluene	$C_{15}H_{24}O$	26.87
pine	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	24.31
	Octane	C_8H_{18}	6.20
	5-Eicosene	$C_{20}H_{40}$	3.36

Table S5 Distribution of other	organic products in	TS-TAH solution	of natural

lignocellulose wastes

TS-TAH- 30	Detected Species	Molecula r Formula	Area Pct (%)
	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	35.16
rice straw	2,4-dimethyl-Hexane	C_8H_{18}	24.44
	Butylated Hydroxytoluene	$C_{15}H_{24}O$	18.04
	Octane	$\mathrm{C_8H_{18}}$	48.01
wheat	Butylated Hydroxytoluene	$C_{15}H_{24}O$	32.80
straw	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	9.11
corn straw	Octane	C_8H_{18}	49.51
	Butylated Hydroxytoluene	$C_{15}H_{24}O$	33.89
	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	8.02
sovbean	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	31.19
straw	Octane	$C_{8}H_{18}$	30.75
	Butylated Hydroxytoluene	$C_{15}H_{24}O$	18.75
	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	35.16
reed straw	2,4-dimethyl-Hexane	$\mathrm{C_8H_{18}}$	24.44
	Butylated Hydroxytoluene	$C_{15}H_{24}O$	18.04
	Octane	C_8H_{18}	30.24
pine	Butylated Hydroxytoluene	$C_{15}H_{24}O$	19.65
Pine	2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- Phenol	$C_{23}H_{32}O_2$	19.31

Table S6 Distribution of other organic products in TS-TAH-30 solution of

natural lignocellulose wastes

TS-TAH	Organic acids as a share of TSC (wt.%), a	PR hydrogen yield for different single organic acids derived from TS-TAH (μmol, 12 h), b	Actual contribution of hydrogen yield in TS- TAH (μmol, 12 h), c
lactic acid	1.5	11.68	0.17
acetic acid	1.1	0.25	0.0026
propionic acid	0.8	1.00	0.008
formic acid	3.1	8.33	0.25
tartaric acid	1.8	22.24	0.39
oxalic acid	5.4	0.22	0.012
Totol	13.7	-	0.83
PR TS-TAH of core straw	-	4.7	4.7

Table S7 Estimation PR hydrogen enhancement efficiency of organic acids inTS-TAH of corn stover

Note: c= a×b

Samulas	Cellulose	Hemicellulose	Lignin	Cellulose	Hemicellulose	Lignin	Lactic	Acetic	Propionic	Formic	Tartaric	Oxatic
Samples	(wt.%)	(wt.%)	(wt.%)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
rice straw	37.81	27.24	3.440	3025	2179	275.2	185.1	164.0	6.014	387.2	132.2	209.2
wheat straw	34.70	32.14	6.970	2776	2571	557.6	157.0	108.4	11.18	415.2	123.7	374.5
corn straw	36.09	29.35	3.910	2887	2348	312.8	118.3	84.54	6.426	244.1	140.3	430.8
soybean straw	31.93	14.94	13.54	2554	1195	1083	185.8	108.6	30.20	378.7	132.8	139.2
reed straw	35.32	25.81	13.26	2826	2065	1061	121.4	148.8	0.000	382.3	103.3	688.7
pine	10.33	8.770	62.30	826.4	701.6	4984	417.0	148.5	37.01	582.6	178.5	715.3

 Table S8 Quantity of organic acid generated from TS-TAH

References

- W. Wang, B. Cheng, M. Zhao, E. Anthony, R. Luque, D.D. Dionysiou, Boosting H₂ yield from photoreforming of lignocellulose by thermo-alkaline hydrolysis with selective generation of a key intermediate product: Tartaric acid, Energ Convers. Manage. 257 (2022) 115444. https://doi.org/https://doi.org/10.1016/j.enconman.2022.115444.
- M. Yoo, Y.-S. Yu, H. Ha, S. Lee, J.-S. Choi, S. Oh, E. Kang, H. Choi, H. An, K.-S. Lee, J.Y. Park, R. Celestre, M.A. Marcus, K. Nowrouzi, D. Taube, D.A. Shapiro, W. Jung, C. Kim, H.Y. Kim, A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity, Energ Environ. Sci. 13 (2020) 1231-1239. <u>https://doi.org/10.1039/C9EE03492G</u>.