Electronic Supplementary Material (ESI) for RSC Sustainability. This journal is © The Royal Society of Chemistry 2024

GQD-PAN based high-performance supercapacitor – an approach towards wealth from

waste

Dheeraj Kumar^A, Ekta Vashishth^A, Sweety Rani^A, Advitiya Kumar^A, Bhanu Nandan^A,

Supreet Singh Bahga^B, Rajiv K. Srivastava^{A*}

^A Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz

Khas, New Delhi 110016, INDIA

^B Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas,

New Delhi 110016, INDIA

*Corresponding author, Email: rajiv@iitd.ac.in

ELECTROCHEMICAL STUDIES

Table S1 | Areal and volumetric capacitance of neat cPAN based three-electrode system at varying current density values.

Sample	Current	Discharge	Potential	Area	Weight	Areal	Volumetric
	Density	Time (s)	Window	(cm ²)	(mg)	Capacitance	Capacitance
	(mAcm ⁻²)		(V)			(mF/cm ²)	(F/g)
	0.8	33	1.1	1	2	24.00	12.00
	1.0	17	1.1	1	2	15.45	7.73
Neat	1.2	9	1.1	1	2	9.82	4.91
cPAN	1.4	5	1.1	1	2	6.36	3.18
	1.6	3	1.1	1	2	4.36	2.18

Table S2 | Areal and volumetric capacitance of 0.1 mg GQDs coated cPAN based three-electrode system at varying current density values.

Sample	Current	Discharge	Potential	Area	Weight	Areal	Volumetric
	Density	Time (s)	Window	(cm ²)	(mg)	Capacitance	Capacitance
	(mAcm ⁻²)		(V)			(mF/cm ²)	(F/g)
	0.6	1121	1.1	1	2.1	611.45	291.17
0.1 mg	0.8	617	1.1	1	2.1	448.73	213.68
GQDs	1.0	321	1.1	1	2.1	291.82	138.96
coated	1.2	124	1.1	1	2.1	135.27	64.42
cPAN	2.0	23	1.1	1	2.1	41.82	19.91

Table S3 | Areal and volumetric capacitance of 0.4 mg GQDs coated cPAN based three-electrode system at varying current density values.

Sample	Current	Discharge	Potential	Area	Weight	Areal	Volumetric
	Density	Time (s)	Window	(cm ²)	(mg)	Capacitance	Capacitance
	(mAcm ⁻²)		(V)			(mF/cm ²)	(F/g)
0.4 mg	2.0	1036	1.1	1	2.4	1883.64	784.85
GQDs	3.0	516	1.1	1	2.4	1407.27	586.36
coated	4.0	219	1.1	1	2.4	796.36	331.82
cPAN							

Table S4 | Areal and volumetric capacitance of 0.1 mg GQDs coated cPAN based two-electrode system at varying current density values.

Sample	Current	Discharge	Potential	Area	Weight	Areal	Volumetric
	Density	Time (s)	Window	(cm ²)	(mg)	Capacitance	Capacitance
	(mAcm ⁻²)		(V)			(mF/cm ²)	(F/g)
	0.4	289.00	1.1	1.76	3.7	59.71	28.40
0.1 mg	0.6	155.88	1.1	1.76	3.7	48.31	22.98
GQDs	0.8	93.67	1.1	1.76	3.7	38.71	18.41
coated	1.0	59.69	1.1	1.76	3.7	30.83	14.67
cPAN	2.0	5.67	1.1	1.76	3.7	5.86	2.79

Table S5 | Energy density and power density of neat cPAN, 0.1 and 0.4 mg GQDs coated cPAN based three-electrode system, 0.1 mg GQDs coated two-electrode system at varying current density values.

Neat cPAN		0.1 mg GQDs coated		0.4 mg GQ	Ds coated	0.1 mg GQDs coated	
		three-electrode		three-e	lectrode	two-electrode	
Energy	Power	Energy	Power	Energy	Power	Energy	Power
Density	Density	Density	Density	Density	Density	Density	Density
(µWhcm ⁻²)	(µWcm ⁻²)						
102.76	330	4.03	440	316.56	1100	10.03	125
75.41	440	2.60	550	236.50	1650	8.12	187.5
49.04	550	1.65	660	133.83	2200	6.50	250
22.73	660	1.07	770	116.88	2750	5.18	312.5
7.03	1100	0.73	880	76.08	3300	0.98	625

Figure S1 | Contact angle measurement of (A) neat cPAN fibre (137°) and (B) GQDs coated cPAN (145°).

Figure S2 | (A) CV curves of 0.4 mg GQDs coated cPAN matrices collected under various scan rates. (B) CV curves of 0.1 mg GQDs coated cPAN matrix collected under various scan rates.

Figure S3 | (A) GCD curve collected for 0.1 mg and 0.4 mg GQDs coated cPAN matrices. (B) CV curves of neat cPAN and 0.1 mg GQDs coated cPAN matrices collected with three- and two-electrode system-based supercapacitor.

Figure S4 | 0.1 mg GQDs coated cPAN matrix capacitance retention for 3000 cycles in threeelectrode supercapacitor.

Figure S5 | GQDs particle size distribution graph calculated form TEM image.

Figure S6 | BET (Brunauer-Emmett-Teller) of neat cPAN and GQDs coated cPAN fibre.

Figure S7 | Schematic of the three-electrode electrochemical system.