Supporting Information

Biodegradable and Wood Adhesive Polyesters Based on Lignin-

Derived 2-Pyrone-4,6-dicarboxylic Acid

Yijie Jin,^a Takuma Araki,^b Naofumi Kamimura,^c Eiji Masai,^c Masaya Nakamura,^b and Tsuyoshi Michinobu^{a,*}

^a Department of Materials Science and Engineering, Tokyo Institute of Technology,

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

^b Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan

^c Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188

*Corresponding author. E-mail: michinobu.t.aa@m.titech.ac.jp

Figure S1. Cypress fractured by shear forces.

No accelerated deterioration treatment

Soak in DI water at 60 °C for 3 h \rightarrow soak in DI water at 20 °C for 10 min

Soak in boiling DI water for 4 h \rightarrow soak in DI water at 60 °C for 20 h \rightarrow soak in boiling DI water for 4 h \rightarrow soak in DI water at 20 °C for 10 min

Figure S3. (a) XPS survey spectra of P(PDC2) and P(PDC3) after hot-pressing, (b) O 1s core-level spectrum of P(PDC2), (c) O 1s core-level spectrum of P(PDC3), (d) O 1s core-level spectrum of cypress wood plate, (e) O 1s core-level spectrum of P(PDC2) after hot-pressing, (f) O 1s core-level spectrum of P(PDC3) after hot-pressing.

Figure S4. Biodegradation rates of P(PDC2), PDC, BHPDC and PET in pure pond water for 120 days or 180 days. Average plots of two test samples.