Electronic Supplementary Material (ESI) for RSC Sustainability. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information (ESI)

Green Synthesis of Thioamide Derivatives in Environmentally Benign Deep Eutectic Solvent (DES)

Susmita Mandal, Archana Jain,* and Tarun K. Panda*

Table of contents:

1.Experimental section
1a. General information
1b. General procedure for synthesis of DES
1c. General procedure for thioamidation reaction
1d. Recyclability test
1e. General procedure for gram scale thioamidation reaction
2. Characterisation data of DES4
3. Characterisation data of thioamides (3a-3n) from aliphatic secondary amines
4. Characterisation data of thioamides (4a-4r) from different cyclic amines8-12
5. Characterisation data of thioamides (5a-5g) from different ketones and amines12-14
6. Characterisation data of thioamides (6a-6c) from different acids and amines14-15
7. Characterisation data of 1,3,4-thiadiazole compounds (7a-7d)15-16
8. NMR spectra of DES17
9. NMR spectra of thioamides (3a-3n) from aliphatic secondary amines
10. NMR spectra of thioamides (4a-4p) from different cyclic amines
11. NMR spectra of thioamides (5a-5g) from different ketones and amines
12. NMR spectra of thioamides (6a-6c) from different amine and acid60-62
13. NMR spectra of 1,3,4-thiadiazole compounds (7a-7d)63-66
14. Green chemistry metrics calculation for thioamidation reaction
13. References

1. Experimental Section

1a. General Information

All the reactions were performed in open air using dry glassware. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded by using Bruker advance III-400 spectrometer. Mass spectrometry data of the corresponding thioamide derivatives were collected on ESI-HRMS mass spectrometer (Model: 1260 Infinity II, make: Agilent) and ESI-LCMS mass spectrometer. The NMR solvent CDCl₃ and all other reagents were purchased from Sigma Aldrich and were used without any further purification.

1b. General procedure for synthesis of DES

DES was prepared according to the previously reported procedure in the literature.^[1] In a dry 50 mL round bottom flask, Choline chloride (ChCl) (0.028 mol, 4 g) and urea (0.057 mol, 3.4 g) were mixed in a 1:2 ratio and then heated at 80 °C for 30 min. A colorless liquid was produced. This liquid eutectic mixture is used for catalytic experiments without any kind of purification. The DES is characterized by ¹H and ¹³C NMR spectroscopy.

1c. General procedure for thioamidation reaction.

In a 25 mL dry sealed tube, the corresponding aldehyde or ketone (1.56 mmol), secondary amine (1.56 mmol), elemental sulfur powder (0.195 mmol) and 25 mol% of DES [Choline chloride:urea (1:2)] (0.4 mmol, 101 mg) were added. Then this whole reaction mixture was heated at 45 °C for five hours in an oil bath. After completion of the reaction as monitored by TLC plate, the reaction mixture was cooled to room temperature, diluted with water (10 mL), and then extracted with ethyl acetate (3 x 5 mL). The reaction mixture was then quenched with saturated NaHCO₃ solution (2 x 5 mL) and dried over anhydrous sodium sulfate. The organic layer collected was evaporated under reduced pressure and the resulted crude was purified using silica gel column chromatography with hexane: EtOAc (100:5). The corresponding thioamide derivatives obtained were characterised by ¹H, ¹³C NMR spectroscopy, and mass-spectrometry analysis. The aqueous layer was utilized for the recovery of DES.

1d. Recyclability Test

The reusability test was performed using the reaction between *p*-tolulaldehyde, diethylamine, and the elemental sulfur powder in DES (25 mol%) in 1:1:0.125 molar ratio under optimized conditions (at 45 °C temperature for five hours) as the multicomponent model reaction. After completion of the reaction, DES was recovered from water phase by evaporation at 85 °C under reduced pressure. The remainder of the viscous DES was further dried at 70 °C for three hours under reduced pressure to remove any traces of water and then subjected to the next run with the same reactants without further addition of DES in the cycle.

1e. Gram scale Thioamidation reaction.

In a 50 mL dry Schlenk tube, diethylamine amine (0.03 mol, 2.3 g), elemental sulfur powder (0.004 mol, 1 g), *p*-tolulaldehyde (0.03 mol, 3.7 g), and 25 mol% of DES (7.8 mmol, 2 g) were added. Then this whole reaction mixture was heated at 45 °C for five hours in an oil bath. After completion of the reaction as monitored by TLC plate, the reaction mixture was cooled to room temperature, diluted with water (30 mL) and extracted with ethylacetate (3 x 15 mL). The combined ethyl acetate extracts were washed with saturated aq. sodium bicarbonate solution (2 x 5 mL) and dried over anhydrous sodium sulfate. The combined ethyl acetate extracts were concentrated in *vacuo* and the resulting product was directly charged on a small silica gel column and eluted with a mixture of hexane: ethyl acetate (EtOAc) (3:2) to afford the pure thioamide derivative in each case. Each derivative was characterised by ¹H, ¹³C NMR spectroscopy (and by MS analysis wherever required).

Characterization data of DES^[1]

¹H NMR (600 MHz, D₂O, 25 °C): $\delta_{\rm H}$ 5.94 (s, 1H), 4.79 (s, 8H), 4.15 - 4.10 (m, 2H), 3.63 - 3.58 (m, 2H), 3.28 (s, 9H) ppm. ¹³C{¹H} NMR (150 MHz, D₂O, 25 °C): $\delta_{\rm C}$ 162.42, 67.56, 55.79, 54.04 ppm.

Characterisation data of thioamides (3a-3n) from aliphatic secondary amine:

N,N-diethylbenzothioamide **(3a)**.^[2] Yield: 272 mg, 90%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.38 - 7.19 (m, 5H, Ar*H*), 4.12 (q, *J* = 7.1 Hz, 2H, C*H*₂CH₃), 3.43 (q, *J* = 7.1 Hz, 2H, C*H*₂CH₃), 1.38 (t, *J* = 7.1 Hz, 3H, CH₂C*H*₃), 1.13 (t, *J* = 7.1 Hz, 3H, CH₂C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 200.2,

143.8, 128.3, 128.0, 124.9, 47.8, 46.1, 13.8, 11.3 ppm.

N,N-diethyl-4-methylbenzothioamide **(3b)**.^[2] Yield: 301 mg, 93%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.16 - 7.10 (m, 4H, Ar*H*), 4.12 (q, *J* = 7.1Hz, 2H, C*H*₂CH₃), 3.46 (q, *J* = 7.1 Hz, 2H, C*H*₂CH₃) 2.34 (s, 3H, C*H*₃), 1.39 (t, *J* = 7.1 Hz, 3H, CH₂CH₃), 1.15 (t, *J* = 7.2 Hz, 3H, CH₂CH₃) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ_C 200.8, 141.3, 138.1, 129.1, 125.1, 47.9, 46.2, 21.3, 14.0, 11.4 ppm.

4-chloro-N,N-diethylbenzothioamide (**3c**).^[2] Yield: 323 mg, 91%. ¹H NMR (600 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.34 - 7.29 (m, 2H, Ar*H*), 7.21 - 7.15 (m, 2H, Ar*H*), 4.10 (q, *J* = 7.1 Hz, 2H, C*H*₂CH₃), 3.43 (q, *J* = 7.2 Hz, 2H, C*H*₂CH₃), 1.37 (t, *J* = 7.1 Hz, 3H, CH₂C*H*₃), 1.14 (t, *J* = 7.2 Hz, 3H,

CH₂CH₃) ppm. ¹³C{¹H} NMR (150 MHz, CDCl₃, 25 °C): *δ*_C 198.6, 142.1, 133.8, 128.5, 126.4, 47.8, 46.1, 13.8, 11.2 ppm.

N,N-diethyl-2-fluorobenzothioamide **(3d)**.^[3] Yield: 287 mg, 87%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.35 - 7.27 (m, 2H, Ar*H*), 7.17 - 7.13 (m, 1H, Ar*H*), 7.07 - 7.03 (m, 1H, Ar*H*), 4.31 (dq, J = 14.2 Hz, 7.1 Hz, 1H, C*H*₂CH₃), 3.98 (dq, J = 14.2 Hz, 7.1 Hz, 1H, C*H*₂CH₃), 3.98 (dq, J = 14.2 Hz, 7.1 Hz, 1H, C*H*₂CH₃), 1.39 (t, J

= 7.1 Hz, 3H, CH₂CH₃), 1.14 (t, J = 7.2 Hz, 3H, CH₂CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 193.2, 155.5 (d, J = 245 Hz), 131.4 (d, J = 17 Hz), 130.0 (d, J = 8 Hz), 128.3 (d, J = 3 Hz) 124.6 (d, J = 4 Hz), 115.9 (d, J = 21 Hz), 48.1, 46.1, 13.5, 11.3 ppm. ¹⁹F{¹H} NMR (565 MHz, CDCl₃, 25 °C): $\delta_{\rm F}$ -116.9 ppm.

N,N-diethyl-4-methoxybenzothioamide **(3e)**.^[4] Yield: 321 mg, 92%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.23 - 7.17 (m, 2H, Ar*H*), 6.88 - 6.83 (m, 2H, Ar*H*), 4.11 (q, J = 7.1 Hz, 2H, CH₂CH₃), 3.80 (s, 3H, OCH₃), 3.48 (q, J = 7.1 Hz, 2H, CH₂CH₃), 1.38 (t, J = 7.1 Hz, 3H,

CH₂CH₃), 1.15 (t, J = 7.1 Hz, 3H, CH₂CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 200.3, 159.4, 136.5, 126.7, 113.6, 55.3, 47.8, 46.2, 13.9, 11.2 ppm.

3-chloro-N,N-diethylbenzothioamide **(3f)**.^[5] Yield: 331 mg, 93%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.23 - 7.17 (m, 2H, Ar*H*), 7.16 - 7.14 (m, 1H, Ar*H*), 7.06 - 7.01 (m, 1H, Ar*H*), 4.02 (q, *J* = 7.1 Hz, 2H, C*H*₂CH₃), 3.35 (q, *J* = 7.2 Hz, 2H, C*H*₂CH₃), 1.30 (t, *J* = 7.1 Hz, 3H, CH₂C*H*₃), 1.07 (t, *J* = 7.2 Hz, 3H, CH₂C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 197.9, 145.1, 134.2,

129.7, 128.1, 125.1, 123.1, 47.9, 46.1, 13.8, 11.2 ppm.

N,N-diethyl-2-hydroxybenzothioamide **(3g)**.^[6] Yield: 294 mg, 90%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.46 (s, 1H, OH), 7.20 - 7.15 (m, 1H, ArH), 6.99 - 6.91 (m, 2H, ArH), 6.86 (t, J = 7.5 Hz, 1H, ArH), 4.11 (s, 2H, CH₂CH₃), 3.51 (s, 2H, CH₂CH₃), 1.36 (s, 3H, CH₂CH₃), 1.16 (s, 3H,

CH₂C*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): *δ*_C 196.0, 152.5, 130.2, 128.8, 125.2, 119.9, 118.0, 48.5, 46.3, 13.7, 11.4 ppm.

N,N-diethyl-3-phenoxybenzothioamide (**3h**). Yield: 397 mg, 89%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.38 - 7.24 (m, 3H, Ar*H*), 7.14 - 7.09 (m, 1H, Ar*H*), 7.05 - 7.00 (m, 2H, Ar*H*), 6.96 - 6.90 (m, 2H, Ar*H*), 6.87 - 6.84 (m, 1H, Ar*H*), 4.08 (q, J = 7.1 Hz, 2H, CH₂CH₃), 3.43 (q, J = 7.1Hz, 2H, CH₂CH₃), 1.35 (t, J = 7.1 Hz, 3H, CH₂CH₃), 1.12 (t, J = 7.2 Hz,

3H, CH₂CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ_C 199.0, 157.3, 156.4, 145.2, 129.8, 123.7, 119.7, 119.3, 117.8, 115.0, 47.8, 46.0, 13.8, 11.2 ppm. HRMS (ESI) m/z: [(M+H) ⁺] calcd for C₁₇H₁₉NOS 286.1187, found 286.1265.

4-(dimethylamino)-N,N-diethylbenzothioamide **(3i)**. Yield: 317 mg, 86%. ¹H NMR (400 MHz, CDCl₃, 25 °C): *δ*_H 7.76 (d, *J* = 9.0 Hz, 2H, Ar*H*), 6.63 (d, *J* = 9.0 Hz, 2H, Ar*H*), 3.87 (q, *J* = 7.3 Hz, 2H, C*H*₂CH₃), 3.08 (q, *J* = 7.3 Hz, 2H, C*H*₂CH₃), 3.02 (s, 6H, N(C*H*₃)₂),

1.36 (t, J = 7.3 Hz, 3H, CH₂CH₃), 1.25 (t, J = 7.4 Hz, 3H, CH₂CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 201.6, 190.4, 150.6, 132.1, 127.1, 111.5, 111.1, 47.9, 46.4, 40.4, 40.2, 14.1, 11.5 ppm. HRMS (ESI) m/z: [(M+H)⁺] calcd for C₁₃H₂₀N₂S 237.1347, found 237.1409.

N,N-diethyl-4-(methylthio)benzothioamide (**3j**). Yield: 329 mg, 88%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.31 - 7.09 (m, 4H, Ar*H*), 4.11 (q, *J* = 7.1 Hz, 2H, C*H*₂CH₃), 3.46 (q, *J* = 7.1 Hz, 2H, C*H*₂CH₃), 2.48 (s, 3H, SC*H*₃), 1.37 (t, *J* = 7.1 Hz, 3H, CH₂C*H*₃), 1.14 (t, *J* = 7.1

Hz, 3H, CH₂CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 199.7, 140.5, 138.8, 126.0, 125.6, 47.8, 46.2, 15.6, 13.9, 11.3 ppm. HRMS (ESI) m/z: [(M+H) ⁺] calcd for C₁₂H₁₇NS₂ 240.0802, found 240.0876.

N,N-diethylpropanethioamide (**3k**).^[7] Yield: 181 mg, 80%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 4.02 - 3.98 (m, 2H, Alkyl-CH₂), 3.56 (q, J = 7.2 Hz, 2H, CH₂CH₃), 2.77 (q, J = 7.5 Hz, 2H, CH₂CH₃), 1.39 - 1.27 (m, 9H, CH₂CH₃, Alkyl-CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 127.4, 48.0, 47.9,

45.9, 44.6, 36.1, 23.9, 15.3, 14.3, 13.8, 11.3, 11.2 ppm.

N,N-diethyl-2-methylpropanethioamide **(31)**.^[8] Yield: 219 mg, 88%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 3.97 (q, J = 7.1 Hz, 2H, CH₂CH₃), 3.56 (q, J = 7.2 Hz, 2H, CH₂CH₃), 3.07 (hept, J = 6.5 Hz, 1H, Alkyl-CH), 1.25 - 1.17 (m, 12H, CH₂CH₃, Alkyl-CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C):

δ_C 209.7, 48.2, 45.4, 36.2, 23.5, 14.2, 11.2 ppm.

N,N-diethyl-1H-pyrrole-2-carbothioamide **(3m)**. Yield: 248 mg, 87%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 10.01 (s, 1H, N*H*), 6.98 - 6.93 (m, 1H, Ar*H*), 6.51 - 6.45 (m, 1H, Ar*H*), 6.30 - 6.24 (m, 1H, Ar*H*), 4.01 (s, 4H, CH₂CH₃), 1.39 (t, *J* = 6.7 Hz, 6H, CH₂CH₃) ppm. ¹³C{¹H} NMR (100 MHz,

CDCl₃, 25 °C): δ_C (100 MHz, CDCl₃, 25 °C) 185.5, 129.8, 122.9, 110.7, 110.2, 48.2 ppm. HRMS (ESI) m/z: [(M+H) ⁺] calcd for C₉H₁₄N₂S 183.0878, found 183.0953.

N,N-diethylpyridine-2-carbothioamide (**3n**).^[9] Yield: 282 mg, 93%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 8.45 - 8.35 (m, 1H, Ar*H*), 7.65 -7.63 (m, 1H, Ar*H*), 7.37 - 7.32 (m, 1H, Ar*H*), 7.15 - 7.09 (m, 1H, Ar*H*), 4.00 (q, *J* = 7.1 Hz, 2H, C*H*₂CH₃), 3.33 (q, *J* = 7.1 Hz, 2H, C*H*₂CH₃),

1.30 (t, J = 7.1 Hz, 3H, CH₂CH₃), 1.04 (t, J = 7.1 Hz, 3H, CH₂CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 196.9, 159.5, 148.0, 136.6, 122.7, 122.0, 47.7, 46.3, 13.6, 11.0 ppm.

Characterisation data of thioamides (4a-4p) from cyclic secondary amines:

Morpholino(phenyl)methanethione **(4a)**.^[4] Yield: 294 mg, 91%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.40 - 7.26 (m, 5H, Ar*H*), 4.48 - 4.43 (m, 2H), 3.93 - 3.87 (m, 2H), 3.66 - 3.58 (m, 4H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 201.1, 142.6, 129.0, 128.6, 126.0,

66.8, 66.6, 52.6, 49.6 ppm.

(4-methoxyphenyl)(morpholino)methanethione (4b).^[10] Yield: 356 mg, 96%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.31 - 7.26 (m, 2H, Ar*H*), 6.90 - 6.84 (m, 2H, Ar*H*), 4.43 (s, 3H, OC*H*₃), 3.88 (s, 2H), 3.82 (s, 2H), 3.65 (s, 4H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 201.4, 160.4, 135.0, 128.2, 113.9, 66.9, 66.7, 55.5, 52.9, 50.1 ppm.

(4-chlorophenyl)(morpholino)methanethione (4c).^[10] Yield: 351 mg, 93%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.36 - 7.33 (m, 2H, Ar*H*), 7.27 - 7.22 (m, 2H, Ar*H*), 4.44 - 4.39 (m, 2H), 3.90 - 3.86 (m, 2H), 3.66 - 3.58 (m, 4H) ppm. ¹³C {¹H} NMR (100 MHz,

CDCl₃, 25 °C): δ_C 199.7, 140.8, 135.0, 128.9, 127.5, 66.8, 66.6, 52.7, 49.7 ppm.

(2-fluorophenyl)(morpholino)methanethione (4d).^[11] Yield: 302 mg, 86%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.39 - 7.26 (m, 2H, Ar*H*), 7.16 - 7.11 (m, 1H, Ar*H*), 7.04 - 6.96 (m, 1H, Ar*H*), 4.46 - 4.34 (m, 2H), 3.86 - 3.80 (m, 2H), 3.72 - 3.58 (m, 2H), 3.57 - 3.43 (m, 2H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 193.3, 155.3 (d, *J* = 246 Hz), 130.7 (d, *J* = 8 Hz), 129.9 (d, *J* = 17 Hz), 129.4 (d, *J* = 2 Hz), 124.7 (d, *J* = 4 Hz), 115.5 (d, *J* = 22 Hz), 66.4, 66.3, 52.1, 49.2 ppm. ¹⁹F{¹H} NMR (565 MHz, CDCl₃, 25 °C): $\delta_{\rm F}$ -116.2 ppm.

Phenyl(piperidin-1-yl)methanethione (4e).^[11] Yield: 295 mg, 92%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.36 - 7.23 (m, 5H, Ar*H*), 4.37 - 4.30 (m, 2H), 3.52 - 3.47 (m, 2H), 1.85 - 1.50 (m, 6H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 199.2, 143.3, 128.3, 128.2, 125.3,

53.0, 50.5, 26.8, 25.4, 24.0 ppm.

Piperidin-1-yl(p-tolyl)methanethione **(4f).**^[4] Yield: 322 mg, 94%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.19 - 7.11 (m, 4H, Ar*H*), 4.37 - 4.32 (m, 2H), 3.57 - 3.49 (m, 2H), 2.34 (s, 3H, C*H*₃), 1.84 - 1.71 (m, 4H), 1.58 - 1.54 (m, 2H) ppm. ¹³C{¹H} NMR (100

MHz, CDCl₃, 25 °C): δ_C 200.1, 140.7, 138.6, 129.1, 125.7, 53.3, 50.9, 27.0, 25.6, 24.3, 21.4 ppm.

(2-fluorophenyl)(piperidin-1-yl)methanethione (4g).^[13] Yield: 314 mg, 90%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.36 - 7.26 (m, 2H, Ar*H*), 7.17 - 7.12 (m, 1H, Ar*H*), 7.05 - 6.99 (m, 1H, Ar*H*), 4.44 - 4.26 (m, 2H), 3.54 - 3.44 (m, 2H), 1.80 - 1.50 (m, 6H) ppm. ¹³C{¹H} NMR (100

MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 191.7, 155.2 (d, *J* = 246 Hz), 130.6 (d, *J* = 17 Hz), 129.9 (d, *J* = 8 Hz), 128.4 (d, *J* = 2 Hz), 124.3 (d, *J* = 3 Hz), 115.3 (d, *J* = 21 Hz), 52.7, 49.9, 26.3, 25.2, 23.7 ppm. ¹⁹F{¹H} NMR (565 MHz, CDCl₃, 25 °C): $\delta_{\rm F}$ -116.5 ppm.

Phenyl(pyrrolidin-1-yl)methanethione (**4h**).^[14] Yield: 266 mg, 89%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.39 - 7.25 (m, 5H, Ar*H*), 3.98 (t, *J* = 7.1 Hz, 2H), 3.46 (t, *J* = 6.8 Hz, 2H), 2.12 - 1.92 (m, 4H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 197.4, 144.1,

128.8, 128.4, 125.8, 53.9, 53.5, 26.6, 24.8 ppm.

Pyrrolidin-1-yl(p-tolyl)methanethione (4i).^[12] Yield: 292 mg, 91%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.18 - 7.13 (m, 2H, Ar*H*), 7.02 (d, *J* = 7.2 Hz, 2H, Ar*H*), 3.82 (t, *J* = 6.7 Hz, 2H), 3.36 (t, *J* = 6.4 Hz, 2H), 2.22 (s, 3H), 1.95 - 1.78 (m, 4H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 196.6, 140.7, 138.2, 128.3, 125.3, 53.4, 53.0, 26.0, 24.2, 20.8 ppm.

(4-chlorophenyl)(pyrrolidin-1-yl)methanethione **(4j)**.^[12] Yield: 310 mg, 88%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.23 (s, 4H, Ar*H*), 3.85 (t, *J* = 7.1 Hz, 2H), 3.37 (t, *J* = 6.7 Hz, 2H), 2.03 - 1.85 (m, 4H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 195.4,

142.1, 134.4, 128.3, 127.1, 53.7, 53.4, 26.4, 24.5 ppm.

(2-fluorophenyl)(pyrrolidin-1-yl)methanethione (4k). Yield: 278 mg, 85%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.33 - 7.17 (m, 2H), 7.10 - 6.90 (m, 2H), 3.84 (s, 2H), 3.33 (t, *J* = 7.2 Hz, 2H), 2.05 - 1.83 (m, 4H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 190.0, 155.5 (d,

J = 245 Hz), 131.3 (d, J = 16 Hz), 130.1 (d, J = 7 Hz), 128.5 (d, J = 2 Hz), 124.2 (d, J = 4 Hz), 115.4 (d, J = 21 Hz), 52.8, 52.3, 25.9, 24.3 ppm. ¹⁹F{¹H} NMR (565 MHz, CDCl₃, 25 °C): $\delta_{\rm F}$ -116.4 ppm. HRMS (ESI) m/z: [(M+H) ⁺] calcd for C₁₁H₁₂FNS 210.0674, found 210.0748.

Morpholino(pyridin-2-yl)methanethione (41).^[10] Yield: 296 mg, 91%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 8.50 (d, J = 4.8 Hz, 1H, Ar*H*), 7.76 - 7.70 (m, 1H, Ar*H*), 7.59 (d, J = 7.9 Hz, 1H, Ar*H*), 7.25 - 7.22 (m, 1H, Ar*H*), 4.44 - 4.41 (m, 2H), 3.91 - 3.88 (m, 2H), 3.72 - 3.68 (m,

2H), 3.60 - 3.57 (m, 2H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): *δ*_C 197.7, 158.8, 148.3, 137.1, 123.9, 123.6, 66.8, 66.5, 52.5, 49.6 ppm.

Piperidin-1-yl(pyridin-2-yl)methanethione (**4m**).^[9] Yield: 287 mg, 89%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 8.51 (d, *J* = 4.8 Hz, 1H, Ar*H*), 7.77 - 7.70 (m, 1H, Ar*H*), 7.48 (d, *J* = 7.9 Hz, 1H, Ar*H*), 7.27 -7.23 (m, 1H, Ar*H*), 4.37 - 4.31 (m, 2H), 3.50 - 3.43 (m, 2H), 1.85 -

1.73 (m, 4H), 1.65 - 1.59 (m, 2H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 195.5, 159.0, 147.8, 136.5, 122.5, 121.9, 52.6, 49.8, 26.2, 24.9, 23.5 ppm.

Pyridin-2-yl(pyrrolidin-1-yl)methanethione (4n).^[9] Yield: 282 mg, 94%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 8.36 (d, J = 0.7 Hz, 1H, Ar*H*), 7.65 - 7.53 (m, 2H, Ar*H*), 7.17 - 7.11 (m, 1H, Ar*H*), 3.87 - 3.80 (m, 2H), 3.52 - 3.45 (m, 2H), 1.95 - 1.83 (m, 4H) ppm. ¹³C{¹H} NMR

(100 MHz, CDCl₃, 25 °C): *δ*_C 193.2, 159.3, 147.5, 136.6, 123.3, 123.0, 53.4, 52.9, 26.3, 24.0 ppm.

2-fluoro-N-phenylbenzothioamide **(40)**.^[11] Yield: 282 mg, 78%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 8.81 (s, 1H, N*H*), 7.97 - 7.93 (m, 2H, Ar*H*), 7.87 - 7.83 (m, 2H, Ar*H*), 7.44 - 7.39 (m, 2H, Ar*H*), 7.35 - 7.30 (m, 3H, Ar*H*) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃,

25 °C): $\delta_{\rm C}$ 192.7, 157.3 (d, J = 247 Hz), 138.8, 133.4, 132.60 (d, J = 8 Hz), 129.2 (d, J = 10 Hz), 128.0 (d, J = 4 Hz), 127.3, 124.8 (d, J = 4 Hz), 124.1, 116.1 (d, J = 24 Hz) ppm. ¹⁹F{¹H} NMR (565 MHz, CDCl₃, 25 °C): $\delta_{\rm F}$ -116.2 ppm.

N-benzyl-2-fluorobenzothioamide (**4p**).^[11] Yield: 291 mg, 76%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.91 (s, 1H, N*H*), 7.69 -7.64 (m, 2H, Ar*H*), 7.35 - 7.25 (m, 7H, Ar*H*), 4.90 (d, *J* = 5.3 Hz, 2H, C*H*₂NH) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$

193.4, 157.8 (d, J = 248 Hz), 136.0, 133.5, 132.5 (d, J = 9 Hz), 129.1, 128.3 (d, J = 5 Hz), 128.1 (d, J = 11 Hz), 124.7 (d, J = 3 Hz), 116.0 (d, J = 24 Hz), 51.32 ppm. ¹⁹F{¹H} NMR (565 MHz, CDCl₃, 25 °C): $\delta_{\rm F}$ -116.4 ppm.

4-(morpholine-4-carbonothioyl)benzonitrile (4q).^[14] Yield: 311 mg, 86%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.65 (d, J = 8.5 Hz, 2H, Ar*H*), 7.36 (d, J = 8.5 Hz, 2H, Ar*H*), 4.41 - 4.37 (m, 2H), 3.89 - 3.84 (m, 2H), 3.66 - 3.61 (m, 2H), 3.55 - 3.50 (m,

2H) ppm. ¹³C {¹H} NMR (100 MHz, CDCl₃, 25 °C): *δ*_C 197.9, 146.3, 132.6, 126.5, 118.2, 112.4, 66.6, 66.5, 52.6, 49.3 ppm.

4-(piperidine-1-carbonothioyl)benzonitrile (4r).^[14] Yield: 323 mg, 90%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.60 (d, J = 8.5 Hz, 2H, Ar*H*), 7.32 (d, J = 8.5 Hz, 2H, Ar*H*), 4.31 - 4.26 (m, 2H), 3.44 - 3.40 (m, 2H), 1.80 - 1.70 (m, 4H) ppm. ¹³C{¹H} NMR (100

MHz, CDCl₃, 25 °C): *δ*_C 196.2, 147.1, 132.4, 126.0, 118.3, 111.7, 53.2, 50.3, 26.8, 25.3, 23.9 ppm.

Characterisation data of thioamides (5a-5g) from ketones and different amines:

2-(4-hydroxyphenyl)-1-morpholinoethane-1-thione (**5a**).^[15] Yield: 259 mg, 70%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.12 (d, *J* = 8.4 Hz, 2H, Ar*H*), 6.77 (d, *J* = 8.5 Hz, 2H, Ar*H*), 4.35 - 4.31 (m, 2H), 4.24 (s, 2H, CH₂CS), 3.74 - 3.71 (m,

2H), 3.64 - 3.61 (m, 2H), 3.42 - 3.37 (m, 2H) ppm. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 25 °C): δ_C 200.6, 155.0, 132.8, 129.0, 127.5, 116.2, 116.0, 66.4, 66.2, 50.9, 50.4, 49.7 ppm.

2-(4-aminophenyl)-1-morpholinoethane-1-thione (5b).^[16] Yield: 251 mg, 68%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.05 (d, J = 8.3 Hz, 2H, Ar*H*), 6.60 (d, J = 8.2 Hz, 2H, Ar*H*), 4.31 – 4.28 (m, 2H), 4.19 (s, 2H, CH₂CS), 3.70 - 3.67

(m, 2H), 3.62 - 3.59 (m, 2H), 3.39 - 3.33 (m, 2H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ_C 200.8, 152.8, 145.4, 132.6, 128.7, 125.3, 115.5, 113.9, 66.5, 66.3, 66.3, 66.2, 50.7, 50.2, 49.8, 47.1 ppm.

1-morpholino-2-(p-tolyl)ethane-1-thione (5c).^[17] Yield: 261 mg, 71%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.88 (d, J = 8.2 Hz, 1H, Ar*H*), 7.30 - 7.18 (m, 3H), 4.36 - 4.30 (m, 4H), 3.92 - 3.87 (m, 2H), 3.75 - 3.71 (m, 2H), 2.43 (s, 2H,

CH₂CS), 2.32 (s, 3H, CH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 200.4, 145.8, 136.8, 132.8, 130.1, 129.8, 129.7, 127.7, 126.8, 66.6, 66.2, 52.0, 50.9, 50.3, 50.3, 47.2, 22.0, 21.2 ppm.

2-(2-chlorophenyl)-1-morpholinoethane-1-thione (**5d**).^[17] Yield: 291 mg, 73%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.45 - 7.36 (m, 2H, Ar*H*), 7.28 - 7.20 (m, 2H, Ar*H*), 4.40 - 4.35 (m, 4H), 3.79 - 3.75 (m, 2H), 3.57 - 3.53 (m, 2H), 3.49 - 3.45 (m, 2H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): *δ*_C 199.5, 133.8, 133.2, 129.7, 129.1, 128.6, 127.4, 66.4, 66.2, 50.8, 50.1, 47.2 ppm.

2-(4-aminophenyl)-1-(piperidin-1-yl)ethane-1-thione (5e). Yield: 238 mg, 65%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.12 (d, J = 8.5 Hz, 2H, Ar*H*), 6.65 - 6.60 (m, 2H, Ar*H*), 4.27 - 4.21 (m, 4H), 3.64 - 3.53 (m, 3H), 1.64 - 1.55

(m, 3H), 1.35 - 1.27 (m, 2H) ppm. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 25 °C): δ_C 199.3, 145.2, 128.9, 126.1, 115.6, 51.8, 51.6, 50.4, 26.4, 25.4, 24.0 ppm. HRMS (ESI) m/z: [(M+H) ⁺] calcd for C₁₃H₁₈N₂S 235.1191, found 235.1263.

2-(4-hydroxyphenyl)-1-(pyrrolidin-1-yl)ethane-1-thione (5f). Yield: 228 mg, 66%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.13 (d, J = 8.4 Hz, 2H, Ar*H*), 6.78 - 6.74 (m, 2H, Ar*H*), 4.07 (s, 2H, C*H*₂CS), 3.83 (t, J = 6.8 Hz, 2H), 3.51

(m, 3H), 1.97 - 1.91 (m, 3H) ppm. ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, 25 °C): δ_C 197.5, 155.0, 132.9, 129.7, 127.0, 116.2, 115.9, 54.4, 51.2, 50.3, 26.5, 24.4 ppm. HRMS (ESI) m/z: [(M+H) +] calcd for C₁₂H₁₅NOS 222.0874, found 222.0948.

2-(4-aminophenyl)-1-(pyrrolidin-1-yl)ethane-1-thione **(5g)**. Yield: 230 mg, 67%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.80 - 7.76 (m, 2H, Ar*H*), 6.62 - 6.59 (m, 2H, Ar*H*), 4.35 (s, 2H, C*H*₂CS), 3.94 - 3.88 (m, 3H), 3.86 - 3.82 (m, 1H), 3.54 -

3.50 (m, 4H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 194.0, 152.5, 132.9, 129.5, 115.5, 114.0, 54.3, 51.3, 51.2, 51.0, 50.7, 26.6, 26.2, 24.4, 24.0 ppm. HRMS (ESI) m/z: [(M+H) ⁺] calcd for C₁₂H₁₆N₂S 221.1034, found 221.1106.

Characterisation data of thioamides (6a-6c) from acid and different amines:

4-methoxy-N-(4-methoxybenzyl)benzothioamide (6a).^[18] Yield: 399 mg, 89%. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ_H 7.76 - 7.71 (m, 2H, Ar*H*), 7.69 (s, 1H, N*H*), 7.32 - 7.28 (m, 2H, Ar*H*),

6.91 - 6.87 (m, 2H, Ar*H*), 6.85 - 6.80 (m, 2H, Ar*H*), 4.88 (d, J = 5.1 Hz, 2H, CH₂NH), 3.80 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 197.7, 162.2, 159.5, 133.9, 129.8, 128.6, 128.5, 114.4, 113.7, 55.5, 55.4, 50.6 ppm.

4-methoxy-N-phenethylbenzothioamide (6b).^[18] Yield: 364 mg, 86%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.68 - 7.63 (m, 2H, Ar*H*), 7.48 (s, 1H, N*H*), 7.37 - 7.25 (m, 5H, Ar*H*), 6.86 - 6.80 (m, 2H, Ar*H*),

4.13 - 4.07 (m, 2H, CH₂CH₂NH), 3.82 (s, 3H, OCH₃), 3.07 (t, J = 6.9 Hz, 2H, CH₂CH₂NH) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ_{C} 198.2, 162.3, 138.5, 134.3, 129.0, 128.9, 128.5, 127.0, 113.8, 55.6, 47.5, 34.1 ppm.

N-(4-methoxybenzyl)-1H-indole-3-carbothioamide (6c). Yield: 393 mg, 85%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.79 - 7.75 (m, 2H, Ar*H*), 7.56 (s, 1H, N*H*), 7.35 - 7.31 (m, 2H, Ar*H*), 6.95 - 6.80 (m, 5H, Ar*H*), 4.92 (d, *J* = 4.9 Hz, 2H, C*H*₂NH), 3.83 (s,

3H, OC*H*₃) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 197.8, 162.4, 159.7, 130.0, 128.7, 114.5, 113.8, 55.6, 55.5, 50.8 ppm. LCMS (ESI) m/z: [(M+H) ⁺] calcd for C₁₇H₁₆N₂OS 296.10, found 297.1.

Characterisation data of thiazole products (7a-7d) obtained from thioamides:

2,5-diphenyl-1,3,4-thiadiazole (6a).^[19] Yield: 113 mg, 92%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.71 - 7.65 (m, 4H, Ar*H*), 7.50 - 7.39 (m, 6H, Ar*H*) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 148.8, 130.9, 130.2, 129.0, 126.2 ppm.

2,5-bis(4-chlorophenyl)-1,3,4-thiadiazole (6b).^[19] Yield: 119 mg, 88%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.64 - 7.58 (m, 4H, Ar*H*), 7.44 - 7.36 (m, 4H, Ar*H*) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃, 25

°C): *δ*_C 147.7, 137.1, 129.4, 128.5, 127.4 ppm.

2,5-di-p-tolyl-1,3,4-thiadiazole (6c).^[19] Yield: 112 mg, 87%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 7.57 (d, *J* = 8.2 Hz, 4H, Ar*H*), 7.24 (d, *J* = 8.0 Hz, 4H, Ar*H*), 2.39 (s, 6H, C*H*₃) ppm. ¹³C{¹H} NMR

(100 MHz, CDCl₃, 25 °C): δ_C 149.0, 141.2, 129.7, 127.3, 126.1, 21.6 ppm.

2,5-di(pyridin-2-yl)-1,3,4-thiadiazole (6d).^[20] Yield: 105 mg, 85%. ¹H NMR (400 MHz, CDCl₃, 25 °C): $\delta_{\rm H}$ 8.58 - 8.55 (m, 2H, Ar*H*), 8.07 - 8.02 (m, 2H, Ar*H*), 7.78 - 7.71 (m, 2H, Ar*H*), 7.37 - 7.30 (m, 2H, Ar*H*) ppm. ¹³C{¹H} NMR (100 MHz,

CDCl₃, 25 °C): δ_C 148.5, 147.6, 146.8, 136.8, 125.0, 121.4 ppm.

NMR spectra of DES:

NMR spectra of thioamide compounds (3a-3n):

4,15 4,10 3,48 3,49 3,49 3,49 3,49 3,49 3,49 1,139 1,1

7.26 7.14 7.12 7.11

Fig S6. ¹³C NMR spectra of 3b (CDCl₃, 100 MHz).

Fig S10. ¹³C NMR spectra of 3d (CDCl₃, 100 MHz).

-116.87

Fig S12. ¹H NMR spectra of 3e (CDCl₃, 400 MHz).

Fig S14. ¹H NMR spectra of 3f (CDCl₃, 400 MHz).

Fig S15. ¹³C NMR spectra of 3f (CDCl₃, 100 MHz).

Fig S16. ¹H NMR spectra of 3g (CDCl₃, 400 MHz).

Fig S22. ¹H NMR spectra of 3j (CDCl₃, 400 MHz).

Fig S24. ¹H NMR spectra of 3k (CDCl₃, 400 MHz).

Fig S26. ¹H NMR spectra of 3l (CDCl₃, 400 MHz).

Fig S31. ¹³C NMR spectra of 3n (CDCl₃, 100 MHz)

NMR spectra of thioamides (4a-4p) from cyclic secondary amines:

Fig S32. ¹H NMR spectra of 4a (CDCl₃, 400 MHz).

Fig S37. ¹³C NMR spectra of **4c** (CDCl₃, 100 MHz).

0 ' -20 ' -30 ' -40 ' -50 ' -60 ' -70 ' -80 ' -90 ' -100 ' -110 ' -120 ' -130 ' -140 ' -150 ' -150 ' -170 ' -180 ' -190 ' -200 Chemical shift (ppm)

Fig S40. $^{19}F{^{1}H}$ NMR spectra of 4d (CDCl₃, 565 MHz).

Fig S42. ¹³C NMR spectra of 4e (CDCl₃, 100 MHz).

Fig S46. ¹³C NMR spectra of **4g** (CDCl₃, 100 MHz).

Fig S48. ¹H NMR spectra of 4h (CDCl₃, 400 MHz).

Fig S51. ¹³C NMR spectra of 4i (CDCl₃, 100 MHz).

Fig S54. ¹H NMR spectra of 4k (CDCl₃, 400 MHz).

-90 ' -100 ' -110 Chemical shift (ppm)

Fig S56. $^{19}F{^{1}H}$ NMR spectra of 4k (CDCl₃, 565 MHz).

Fig S58. ¹³C NMR spectra of 4l (CDCl₃, 100 MHz).

Fig S60. ¹³C NMR spectra of **4m** (CDCl₃, 100 MHz).

Fig S62. ¹³C NMR spectra of **4n** (CDCl₃, 100 MHz).

Fig S68. $^{19}F{^{1}H}$ NMR spectra of 4p (CDCl₃, 565 MHz).

Fig S70. ¹³C NMR spectra of 4q (CDCl₃, 100 MHz).

Fig S72. ¹³C NMR spectra of 4r (CDCl₃, 100 MHz).

NMR spectra of thioamide compounds (5a-5g) from ketone and different amine:

Fig S74. ¹³C NMR spectra of 5a (CDCl₃, 100 MHz)

7.1.80 7.1.80 7.1.80 7.1.28 7.1.29

Fig S78. ¹³C NMR spectra of 5c (CDCl₃, 100 MHz)

Fig S80. ¹³C NMR spectra of 5d (CDCl₃, 100 MHz)

Fig S82. ¹³C NMR spectra of 5e (CDCl₃, 100 MHz)

Fig S84. ¹³C NMR spectra of 5f (CDCl₃, 100 MHz)

Fig S86. ¹³C NMR spectra of 5g (CDCl₃, 100 MHz)

NMR spectra of thioamide compounds (6a-6c) from acid and different amines:

Fig S88. ¹³C NMR spectra of 6a (CDCl₃, 100 MHz)

Fig S90. ¹³C NMR spectra of 6b (CDCl₃, 100 MHz)

Fig S92. ¹³C NMR spectra of 6c (CDCl₃, 100 MHz)

NMR spectra of 1,3,4 thiadiazole compounds (7a-7d) obtained from thioamide:

Fig S94. ¹³C NMR spectra of 7a (CDCl₃, 100 MHz)

' 190 ' 180 ' 170 ' 160 ' 150 ' 140 ' 130 ' 120 ' 110 ' 100 ' 90 ' 80 ' 70 ' 60 ' 50 ' 40 ' 30 ' 20 ' 10 ' Chemical shift (ppm)

Fig S96. ¹³C NMR spectra of 7b (CDCl₃, 100 MHz)

Fig S98. ¹³C NMR spectra of 7c (CDCl₃, 100 MHz)

200 ' 190 ' 180 ' 170 ' 160 ' 150 ' 140 ' 130 ' 120 ' 110 ' 100 ' 90 ' 80 ' 70 ' 60 ' 50 ' 40 ' 30 ' 20 ' 10 ' 6 Chemical shift (ppm)

Fig S100. ¹³C NMR spectra of 7d (CDCl₃, 100 MHz)

Calculations of Green chemistry metrics for thioamidation reaction:

There are different parameters for green chemistry metric like

- 1. E-factor or environmental factor
- 2. Atom economy (AE)
- 3. Atom efficiency
- 4. Carbon efficiency
- 5. Product mass intensity (PMI)
- 6. Reaction mass efficiency (RME)

Here we have calculated different green chemistry metric parameter^{[21],[22]} for our optimized reaction.

Yield = 93%

	Name	Chemical formula	Molecular weight	millimole	mg
Reactant	4-	C_8H_8O	120.15	1.5625	187.7
1	methylbenzaldehyde				
Reactant 2	Diethylamine	$C_4H_{11}N$	73.14	1.5625	114.3
Reactant 3	Sulfur powder	S	32	1.5625	50
Solvent	DES (ChCl: Urea = 1:2)	-	259.5	0.3906	101
Product	N,N-diethyl-4- methylbenzothioami -de	C ₁₂ H ₁₇ NS	207.34	-	301

1. E - factor or environmental factor

 $E \text{ factor} = \frac{\text{Total mass of the waste}}{\text{Mass of the product}}$ $E - \text{factor} = \frac{\{(120.15 \times 1.5625) + (73.14 \times 1.5625) + (32 \times 1.5625) - 301\} \text{ mg}}{301 \text{ mg}}$

E - factor = 0.17

2. Atom economy (AE)

Atom economy =
$$\frac{\text{MW of product}}{\Sigma \text{ (MW of reactants)}} \times 100$$

$$= \frac{207.34}{(120.15 + 73.14 + 32)} \times 100$$
$$= 92\%$$

3. Atom efficiency

Atom efficiency = $\frac{\% \text{ yield of product } \times \% \text{ atom economy}}{100}$

$$=\frac{93\% \times 92\%}{100}$$

Atom efficiency = 85.6%

4. Carbon efficiency (CE)

Carbon efficiency = $\frac{\text{No of carbon atoms in product}}{\Sigma \text{ (No of carbon atoms in reactants)}} \times 100$ Carbon efficiency (CE) = $\frac{12}{(8+4)} \times 100$

Carbon efficiency (CE) = 100%

5. Product mass intensity (PMI)

 $PMI = \frac{\Sigma \text{ (Mass of reactants including solvent)}}{Mass of the product}$

 $PMI = \frac{(120.15 \times 1.5625) + (73.14 \times 1.5625) + (32 \times 1.5625)}{301}$

$$= 1.17$$
 (Ideal value of PMI $= E - factor + 1$)

6. Reaction mass efficiency (RME)

$$RME = \frac{Mass of product}{\Sigma (mass of reactants)} \times 100$$

$$=\frac{301}{(120.15 \times 1.5625) + (73.14 \times 1.5625) + (32 \times 1.5625)} \times 100$$

RME = 85.5%

E- factor	0.17
Atom economy (AE)	92 %
Atom efficiency	85.6%
Carbon efficiency	100%
PMI	1.17
RME	85.5%

Later we have calculated the green chemistry metrics for another four thioamide compounds.

Example 2:

Yield = 88%

	Name	Chemical	Molecular	millimole	mg
		formula	weight		
Reactant	4-chlorobenzaldehyde	C7H5ClO	140.57	1.5625	219.6
Reactant 2	pyrrolidine	C ₄ H ₉ N	71.11	1.5625	111.1
Reactant 3	Sulfur powder	S	32	1.5625	50
Solvent	DES (ChCl: Urea = 1:2)	-	259.5	0.3906	101
Product	(4-chlorophenyl) (pyrrolidin-1-yl) methanethione	C ₁₁ H ₁₂ ClNS	225.73	-	310

E- factor	0.23
Atom economy (AE)	92.6 %
Atom efficiency	81.5%
Carbon efficiency	100%
PMI	1.23
RME	81.4%

Example 3:

Yield = 91%

	Name	Chemical	Molecular	millimole	mg
		formula	weight		
Reactant	2-Pyridine	C ₆ H ₅ NO	107.11	1.5625	167.3
1	carboxaldehyde				
Reactant	morpholine	C4H9NO	87.12	1.5625	136.1
2					
Reactant	Sulfur powder	S	32	1.5625	50
3					
Solvent	DES (ChCl: Urea =	-	259.5	0.3906	101
	1:2)				
Product	morpholino(pyridin-2-	$C_{10}H_{12}N_2OS$	208.28	-	296
	yl)methanethione				

E- factor	0.19
Atom economy (AE)	92 %
Atom efficiency	83.7%
Carbon efficiency	100%
PMI	1.19
RME	83.7%

Example 4:

Yield = 89%

	Name	Chemical	Molecular	millimole	mg
		formula	weight		
Reactant	4-	$C_8H_{11}NO$	137.18	1.5625	214.3
1	Methoxybenzylamine				
Reactant	Sulfur powder	S	32	1.5625	50
2					
Solvent	DES (ChCl: Urea =	-	259.5	0.3906	101
	1:2)				
Product	4-methoxy-N-(4-	$C_{16}H_{17}NO_2S$	287.38	-	399
	methoxybenzyl)benzo				
	thioamide				

E- factor	0.20
Atom economy (AE)	93.8 %
Atom efficiency	83.5%
Carbon efficiency	100%
PMI	1.2
RME	83.3%

References:

- A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, *Chem. Commun.* 2003, 70–71.
- 2. B. Kaboudin, V. Yarahmadi, J. Y. Kato, T. Yokomatsu, RSC Adv. 2013, 3, 6435-6441.
- 3. J. Baudoux, D. Cahard, Org. React. 2008, 69, 1-326.
- 4. A. D. Kale, D. S. Dalal, *ChemistrySelect* **2022**, *7*, DOI 10.1002/slct.202203497.
- 5. M. Lai, Z. Wu, Y. Wang, Y. Zheng, M. Zhao, Org. Chem. Front. 2019, 6, 506-511.
- 6. A. Blade-Font, S. Aguila, T. De Mas, J. M. Torres, J. Chem. Research (S) 1981.
- 7. R. S. Sukhai, R. De Jong, L. Brandsma, Synthesis 1977.
- 8. C. Spanka, E. Schaumann, Sci. Synth. 2006, 23 735-780.
- A. Gupta, J. K. Vankar, J. P. Jadav, G. N. Gururaja, J. Org. Chem. 2022, 87, 2410– 2420.

- 10. J. Li, X. Ren, G. Li, H. Liang, Y. Zhao, Z. Wang, H. Li, B. Yuan, J. Sulfur Chem. 2020, 41, 229–237.
- 11. M. J. Burke, B. M. Trantow, Tetrahedron Lett. 2008, 49, 4579-4581.
- 12. J. Zhang, Y. Liu, Q. Jia, Y. Wang, Y. Ma, M. Szostak, Org. Lett. 2020, 22, 6884-6890.
- 13. S. Mai, W. Li, X. Li, Y. Zhao, Q. Song, Nat. Commun. 2019, 10, 1-12.
- 14. Y. A. Tayade, A. D. Jangale, D. S. Dalal, ChemistrySelect 2018, 3, 8895-8900.
- M. M. Mojtahedi, T. Alishiri, M. S. Abaee, *Phosphorus, Sulfur Silicon Relat. Elem.* 2011, 186, 1910–1915.
- 16. S. D. Salim, S. P. Pathare, K. G. Akamanchi, Catal. Commun. 2011, 13, 78-81.
- 17. W. Lin, M. H. Hu, X. Feng, L. Fu, C. P. Cao, Z. Bin Huang, D. Q. Shi, *Tetrahedron Lett.* 2014, 55, 2238–2242.
- 18. P. Gisbert, I. M. Pastor, Synth. 2018, 50, 3031–3040.
- Kemparajegowda, H. A. Swarup, S. Chandrasekhar, B. K. Jayanna, K. Kumara, N. K. Lokanath, S. B. Thimmaiah, K. Mantelingu, *J. Mol. Struct.* 2022, *1251*, 131970.
- 20. M. Lebrini, F. Bentiss, M. Lagrenée, J. Heterocycl. Chem. 2005, 42, 991-994.
- V. P. Charpe, A. A. Hande, A. Sagadevan, K. C. Hwang, *Green Chem.* 2018, 20, 4859–4864.
- S. Mathavan, K. Kannan, R. B. R. D. Yamajala, Org. Biomol. Chem. 2019, 17, 9620– 9626.