Electronic Supplementary Material (ESI) for RSC Sustainability. This journal is © The Royal Society of Chemistry 2024

## **Supporting Information**

## Sustainable, Upscaled Synthesis of Pinene-Derived (Meth)acrylates and their Application as High $T_{\rm g}$ Monomers in Styrene/Acrylic-Based Bioderived Copolymer Coatings

María Pin-Nó,ªc Philippa L. Jacob,ª Vincenzo Taresco,ª Maud Kastelijn,b Tijs Nabuurs,b Chandres Surti,c John Bilney,c John Daly,c Daniel J. Keddie,ª Steven M. Howdle,\*a Robert A. Stockman\*a

Table S1: Experimental details for synthesis of copolymers P1-P6

|         |              |    | •           |              |             |                                  |
|---------|--------------|----|-------------|--------------|-------------|----------------------------------|
| Entry a | Sample label | M1 | M1<br>moles | M2           | M2<br>moles | [M1]/[M2]/[MAA]<br>(molar ratio) |
| 1       | P1           | BA | 2.55        | PA 1         | 0.87        | 2.93/1.00/0.14                   |
| 2       | P2           | BA | 2.55        | PMA <b>2</b> | 0.82        | 3.12/1.00/0.15                   |
| 3       | Р3           | BA | 2.55        | iBoMA 3      | 0.82        | 3.12/1.00/0.15                   |
| 4       | P4           | St | 3.13        | PA 1         | 0.87        | 3.60/1.00/0.14                   |
| 5       | P5           | St | 3.13        | PMA <b>2</b> | 0.82        | 3.84/1.00/0.15                   |
| 6       | P6           | St | 3.13        | iBoMA 3      | 0.82        | 3.84/1.00/0.15                   |

aMonomer feed ratios (wt  $\frac{\%}{}$ ): M1 =  $\frac{63\%}{(326.3 \text{ g})}$ ; M2 =  $\frac{35\%}{(181.2 \text{ g})}$ ; MAA =  $\frac{2\%}{(10.4 \text{ g})}$ ; total reaction mass =  $\frac{1200 \text{ g}}{}$ .

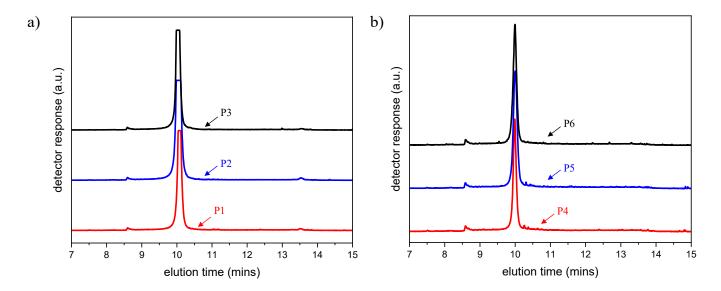
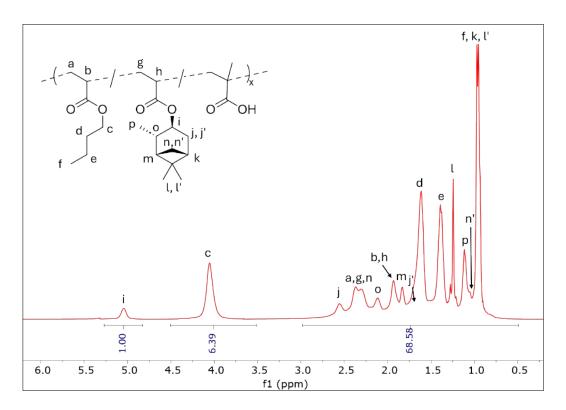
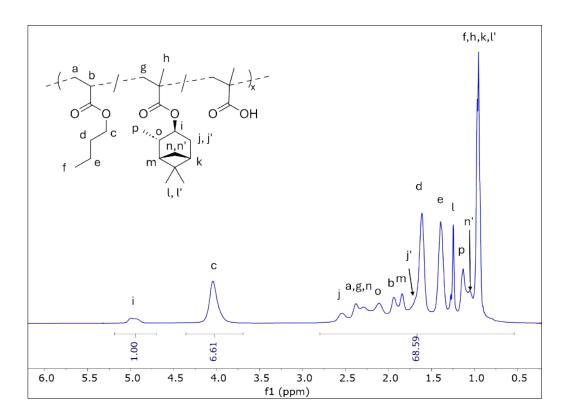
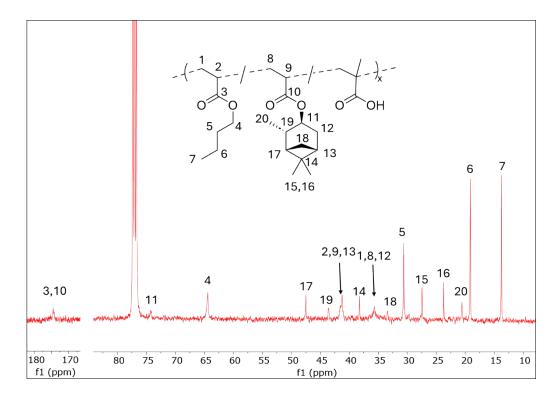



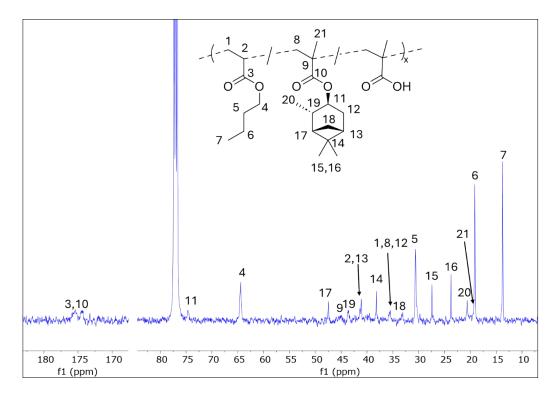

Figure S1: Gradient polymer elution chromatograms of (a) PBA-based copolymers (P1-P3), and (b) PSt-based copolymers (P4-P6) prepared by starved feed emulsion radical copolymerization with PA 1 (red), PMA 2 (blue) and iBoMA 3 (black). P1-P6 refer to the sample labels given in Table 1.


<sup>&</sup>lt;sup>a</sup> School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Email: robert.stockman@nottingham.ac.uk; steve.howdle@nottingham.ac.uk b-Covestro (Netherlands) BV, Sluisweg 12, 5145PE, Waalwijk, The Netherlands


<sup>&</sup>lt;sup>c</sup> Cornelius Specialties Limited, 5c Rookwood Way, Haverhill, Suffolk, CB9 8PB, UK




**Figure S2:** <sup>1</sup>H NMR spectrum of poly[(*n*-butyl acrylate)-*co*-(3-pinanyl acrylate)-*co*-(methacrylic acid)] (**P1**). Note, MAA signal assignments are omitted for clarity.



**Figure S3:** <sup>1</sup>H NMR spectrum of poly[(*n*-butyl acrylate)-*co*-(3-pinanyl methacrylate)-*co*-(methacrylic acid)] (**P2**). Note, MAA signal assignments are omitted for clarity.



**Figure S4:** <sup>13</sup>C NMR spectrum of poly[(*n*-butyl acrylate)-*co*-(3-pinanyl acrylate)-*co*-(methacrylic acid)] (**P1**). Note, MAA signals assignments are omitted for clarity.



**Figure S5:** <sup>13</sup>C NMR spectrum of poly[(*n*-butyl acrylate)-*co*-(3-pinanyl methacrylate)-*co*-(methacrylic acid)] (**P2**). Note, MAA signals assignments are omitted for clarity.