Supplementary information

Hydrothermal Liquefaction of Different Waste Biomass using Green Solvent 2-Methyltetrahydrofuran as Extractant and Co-Solvent

Yuen Wai Lui, Sze Ha Tsang, Tsz Hin Chan, Ka Hei Chan, Yin Hei Lee, Hoi Fung Man, Matthew Y. Lui*

Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR

matthew-lui@hkbu.edu.hk

Compounds	Extract	ant			Co-solvent				
	Under a	ir	Under (CO_2	5 mL	10 mL	5 mL		
	DCM	2-MeTHF	DCM	2-MeTHF	2-MeTHF	2-MeTHF	THF	1-BuOH	EtOH
Phenol	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
3-Methyl-1,2- cyclopentanedione	~	\checkmark	~	\checkmark	\checkmark	\checkmark			\checkmark
Guaiacol		\checkmark			\checkmark	\checkmark		\checkmark	\checkmark
Syringol	~	\checkmark	\checkmark	\checkmark				\checkmark	
Hexadecanoic acid	~	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
Octadecanoic acid	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
9,12,15-Octadecatrienoic acid, (Z,Z,Z)-		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	
Oleic acid	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Erucic acid	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
9-Octadecenamide, (Z)-	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
γ-Sitosterol	~	\checkmark			\checkmark	\checkmark		\checkmark	
Stigmastan-3,5-diene		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Hexadecanoic acid, butyl ester								\checkmark	
Octadecanoic acid, butyl ester								\checkmark	
Hexadecanoic acid, ethyl ester									\checkmark
Octadecanoic acid, ethyl ester									\checkmark
Linoleic acid ethyl ester									\checkmark
Eicosanoic acid, ethyl ester									\checkmark
Ethyl oleate									\checkmark
13,17,21- Trimethyltritriacontane		\checkmark		\checkmark	\checkmark		~		\checkmark

Table S1. The list of products detected in GC-MS in TCM HTL under different reaction conditions.

Compounds	Extrac	tant	Under	<i>CO</i> .	Co-solvent	10 m I	5 m I		
	DCM	2-MeTHF	DCM	2-MeTHF	5 mL 2-MeTHF	2-MeTHF	5 mL THF	1-BuOH	EtOH
Phenol	~	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
3-Methyl-1,2- cyclopentanedione		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	
3,4,5-Trimethyl-2- cyclopentene-1-one		\checkmark		\checkmark			~		~
Cresols	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
Guaiacol		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
4-Methylguaiacol				\checkmark	\checkmark	\checkmark			\checkmark
Catechol		\checkmark			\checkmark	\checkmark	\checkmark		
4-Methylcatechol	~	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
5-Hydroxymethylfurfural					\checkmark	\checkmark		\checkmark	\checkmark
4-Ethylguaiacol		\checkmark			\checkmark				
Acetovanillone	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Eugenol					\checkmark			\checkmark	
Vanillin	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Isoeugenol					\checkmark	\checkmark		\checkmark	\checkmark
4-Propylguaiacol		\checkmark			\checkmark	\checkmark			
Butyl levulinate								\checkmark	
Ethyl levulinate									~

Table S2. The list of products detected in GC-MS in pine sawdust HTL under different reaction conditions.

Compounds	Extract	tant			Co-solvent				
_	Under a	air	Under (CO_2	5 mL	10 mL	5 mL		
	DCM	2-MeTHF	DCM	2-MeTHF	2-MeTHF	2-MeTHF	THF	1-BuOH	EtOH
3-Methyl-2-cyclopenten- 1-one	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Phenol	~	\checkmark							
Dimethyl-2-Cyclopenten- 1-ones	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
2-Hydroxy-3-methyl-2- cyclopenten-1-one					\checkmark	\checkmark	\checkmark		
Methyl-1,2- cyclopentanedione								\checkmark	\checkmark
Cresols	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Guaiacol			\checkmark		\checkmark			\checkmark	\checkmark
3-Ethyl-2-hydroxy-2- cyclopenten-1-one		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Catechol		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Methylcatechols	~	\checkmark							
Syringol	~	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
Vanillin	~	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		
Syringaldehyde	~	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark
Acetosyringone	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

Table S3. The list of products detected in GC-MS in paper towel HTL under different reaction conditions.

Entry	Substrate	Extraction	Co-solvent	Processing	C (%)	H (%)	N (%)	0 (%)
		solvent	(mL)	atmosphere				
		(mL)						
1	TCM	DCM	/	Air				
	Residue				78.7	10.5	1.7	9.1
2	TCM	DCM	/	CO_2				
	Residue				74.5	8.4	2.9	14.2
3	TCM	2-MeTHF	/	Air				
	Residue				76.5	10.7	2.2	10.6
4	TCM	2-MeTHF	/	CO_2				
	Residue				78.3	11.0	0.8	9.9
5	TCM	DCM	5	Air				
	Residue		(2-MeTHF)		74.9	9.1	2.9	13.1
6	TCM	DCM	10	Air				
	Residue		(2-MeTHF)		75.4	9.4	1.7	13.5
7	TCM	DCM	5	Air				
	Residue		(THF)		73.4	9.6	2.9	14.1
8	TCM	DCM	5	Air				
	Residue		(1-BuOH)		73.4	7.9	3.1	15.7
9	TCM	DCM	5	Air				
	Residue		(EtOH)		74.6	9.1	2.7	13.6
10	Pine	DCM	/	Air				
	Sawdust				68.4	6.4	0.0	25.2
11	Pine	DCM	/	CO_2				
	Sawdust				69.2	6.3	0.0	24.5
12	Pine	DCM	/	N_2				
	Sawdust				68.0	6.8	0.0	25.2
13	Pine	2-MeTHF	/	Air				
	Sawdust				70.2	6.7	0.0	23.1
14	Pine	2-MeTHF	/	CO_2				
	Sawdust				67.4	5.6	0.0	27.0
15	Pine	2-MeTHF	/	N_2				
	Sawdust				65.8	6.5	0.3	27.4
16	Pine	DCM	5	Air				
	Sawdust		(2-MeTHF)		71.6	7.8	0.2	20.4
17	Pine	DCM	10	Air				
	Sawdust		(2-MeTHF)		69.0	7.3	0.3	23.4
18	Pine	DCM	5	Air				
	Sawdust		(THF)		69.5	6.4	0.0	24.1
19	Pine	DCM	5	Air				
					1			

Table S4. C, H, N, O wt % of bio-oils from HTL of different substrates under different conditions.

20	Pine	DCM	5	Air				
	Sawdust		(EtOH)		69.8	5.7	0.0	24.5
^21	Pine	DCM	/	Air				
	Sawdust				69.2	6.9	0.0	23.9
^22	Pine	2-MeTHF	/	Air				
	Sawdust				64.2	6.7	0.1	29.0
23	Paper	DCM	/	Air				
	Towel				70.1	7.0	0.3	22.6
24	Paper	DCM	/	CO ₂				
	Towel				71.5	7.2	0.1	21.2
25	Paper	2-MeTHF	/	Air				
	Towel				65.2	7.0	0.1	27.7
26	Paper	2-MeTHF	/	CO_2				
	Towel				66.6	7.3	0.4	25.7
27	Paper	DCM	5	Air				
	Towel		(2-MeTHF)		69.8	7.4	0.4	22.4
28	Paper	DCM	10	Air				
	Towel		(2-MeTHF)		71.2	7.3	0.2	21.3
29	Paper	DCM	5	Air				
	Towel		(THF)		70.3	7.2	0.2	22.3
30	Paper	DCM	5	Air				
	Towel		(1-BuOH)		68.3	6.6	0.0	25.0
31	Paper	DCM	5	Air				
	Towel		(EtOH)		68.8	6.7	0.0	24.5

^30mL of 0.1M NaOH was used.

Entry	Substrate	Extraction	Processing	Biocrude	% change	HHV (MJ	% change
		solvent	atmosphere	(%)	(% [N [#]])	kg-1)	(% [N [#]])
1	TCM Residue	DCM	Air	10.1		39.7	
2	TCM Residue	DCM	CO_2	10.7		34.3	
3	TCM Residue	2-MeTHF	Air	11.6	+40.2 [1]	38.9	-2.0 [1]
4	TCM Residue	2-MeTHF	CO_2	13.7	+28.0 [2]	40.2	+17.2 [2]
5	Pine Sawdust	DCM	Air	22.8		28.1	
6	Pine Sawdust	DCM	CO_2	19.2		28.4	
7	Pine Sawdust	DCM	N_2	9.7		28.6	
8	Pine Sawdust	2-MeTHF	Air	28.1	+23.2 [5]	29.4	+4.6 [5]
9	Pine Sawdust	2-MeTHF	CO_2	30.8	+60.4 [6]	26.5	-6.7 [6]
10	Pine Sawdust	2-MeTHF	N_2	18.9	+94.8 [7]	27.0	-5.6 [7]
11^	Pine Sawdust	DCM	Air	27.9		29.3	
12^	Pine Sawdust	2-MeTHF	Air	37.2	+33.3 [11]	26.6	-9.2 [11]
13	Paper Towel	DCM	Air	16.9		30.0	
14	Paper Towel	DCM	CO_2	24.2		30.9	
15	Paper Towel	2-MeTHF	Air	23.1	+36.7 [13]	27.6	-8.0 [13]
16	Paper Towel	2-MeTHF	CO_2	25.2	+4.1 [14]	28.7	-7.1 [14]

Table S5. Percentage change in biocrude yield and HHV when comparing theextraction performance of DCM and 2-MeTHF.

^30mL of 0.1M NaOH solution was used instead of water.

 $^{\#}N$ = number of entry comparing to

Entry	Substrate	Extraction solvent	Processing atmosphere	Saturated C–H (0–3.5	O-R (3.5-4.5	Unsaturated C–H & PhOH	RCHO & RCOOH
1	TCM	DCM	Air	ppm)	ppm)	(4.5–6.5 ppm)	(~ 7 ppm)
	Residue			77.5%	5.4%	16.3%	0.8%
2	TCM	DCM	CO_2				
	Residue			82.0%	4.1%	14.0%	0.0%
3	TCM	2-MeTHF	Air				
	Residue			82.1%	3.4%	14.5%	0.0%
4	TCM	2-MeTHF	CO_2				
	Residue			77.6%	4.1%	18.4%	0.0%
5	Pine	DCM	Air				
	Sawdust			57.1%	12.6%	28.0%	2.3%
6	Pine	DCM	CO_2				
	Sawdust			50.5%	13.7%	34.8%	1.1%
7	Pine	DCM	N_2				
	Sawdust			71.4%	5.0%	22.9%	0.7%
8	Pine	2-MeTHF	Air				
	Sawdust			55.0%	6.0%	38.0%	1.0%
9	Pine	2-MeTHF	CO_2				
	Sawdust			59.6%	6.1%	33.4%	1.0%
10	Pine	2-MeTHF	N_2				
	Sawdust			59.9%	8.4%	31.1%	0.6%
11^	Pine	DCM	Air				
	Sawdust			62.9%	13.2%	23.9%	0.0%
12^	Pine	2-MeTHF	Air				
	Sawdust			57.4%	9.0%	33.7%	0.0%
13	Paper	DCM	Air				
	Towel			70.1%	9.7%	20.1%	0.0%
14	Paper	2-MeTHF	Air				
	Towel			68.0%	9.5%	22.5%	0.0%
15	Paper	DCM	CO_2				
	Towel			71.9%	7.4%	19.8%	0.8%
16	Paper	2-MeTHF	CO_2				
	Towel			71.3%	7.0%	21.7%	0.0%

Table S6. Percentage hydrogen distribution of biocrudes from HTL of TCM residue, pine sawdust and paper towel using DCM or 2-MeTHF as the extraction solvent.

Table S7. Percentage change in biocrude yield and HHV when 2-MeTHF, THF, 1-BuOH or EtOH was used as the co-solvent.

Entry	Substrate	Co-solvent	Biocrude (%)	% change	HHV (MJ kg ⁻¹)	%
		(mL)		(% [N [#]])		change
						(% [N [#]])
1	TCM Residue	/	10.1		39.7	
2	TCM Residue	5 (2-MeTHF)	15.0	+48.5 [1]	35.6	-10.3 [1]
3	TCM Residue	10 (2-MeTHF)	18.1	+79.2 [1]	36.3	-8.6 [1]
4	TCM Residue	5 (THF)	11.8	-27.1 [2]	35.9	+0.8 [2]
5	TCM Residue	5 (1-BuOH)	23.4	+56.0 [2]	32.6	-8.4 [2]
6	TCM Residue	5 (EtOH)	10.8	-28.0 [2]	35.4	-0.6 [2]
7	Pine Sawdust	/	22.8		28.1	
8	Pine Sawdust	5 (2-MeTHF)	35.4	+55.3 [7]	31.9	+13.5 [7]
9	Pine Sawdust	10 (2-MeTHF)	50.9	+123.2 [7]	29.9	+6.4 [7]
10	Pine Sawdust	5 (THF)	24.2	-46.3 [8]	28.7	-11.1 [8]
11	Pine Sawdust	5 (1-BuOH)	30.7	-13.3 [8]	28.8	-9.7 [8]
12	Pine Sawdust	5 (EtOH)	22.1	-37.6 [8]	27.8	-12.9 [8]
13	Paper Towel	/	16.9		30.0	
14	Paper Towel	5 (2-MeTHF)	21.0	+24.3 [13]	30.4	+1.3 [13]
15	Paper Towel	10 (2-MeTHF)	29.3	+73.4 [13]	30.9	+3.0 [13]
16	Paper Towel	5 (THF)	16.9	-24.3 [14]	30.3	-0.3 [14]
17	Paper Towel	5 (1-BuOH)	20.4	-2.9 [14]	28.5	-6.3 [14]
18	Paper Towel	5 (EtOH)	17.0	-19.0 [14]	28.8	-5.3 [14]

[#]N = number of entry comparing to

Entry	Substrate	Co-solvent	Saturated	O-R (3.5-	Unsaturated	RCHO &
		(mL)	С–Н (0–3.5 ppm)	4.5 ppm)	C–H & PhOH (4.5–8.5 ppm)	RCOOH (>9 ppm)
1	TCM Residue	/	77.5%	5.4%	16.3%	0.8%
2	TCM Residue	2-MeTHF (5)	72.4%	5.1%	21.4%	1.0%
3	TCM Residue	2-MeTHF (10)	71.8%	4.5%	23.6%	0.0%
4	TCM Residue	THF (5)	75.5%	4.9%	18.6%	1.0%
5	TCM Residue	1-BuOH (5)	80.8%	5.0%	14.1%	0.0%
6	TCM Residue	EtOH (5)	79.5%	4.1%	16.4%	0.0%
7	Pine Sawdust	/	57.1%	12.6%	28.0%	2.3%
8	Pine Sawdust	2-MeTHF (5)	55.8%	8.0%	36.6%	1.1%
9	Pine Sawdust	2-MeTHF (10)	52.1%	7.9%	38.9%	1.0%
10	Pine Sawdust	THF (5)	48.5%	10.7%	38.2%	2.6%
11	Pine Sawdust	1-BuOH (5)	54.1%	12.8%	32.7%	0.4%
12	Pine Sawdust	EtOH (5)	53.8%	14.5%	30.1%	1.6%
13	Paper Towel	/	70.1%	9.7%	20.1%	0.0%
14	Paper Towel	2-MeTHF (5)	72.5%	6.5%	21.0%	0.0%
15	Paper Towel	2-MeTHF (10)	71.4%	7.9%	20.7%	0.0%
16	Paper Towel	THF (5)	69.4%	8.3%	22.2%	0.0%
17	Paper Towel	1-BuOH (5)	70.9%	8.7%	20.5%	0.0%
18	Paper Towel	EtOH (5)	72.1%	8.6%	25.8%	0.0%

Table S8. Percentage hydrogen distribution of biocrudes from HTL of TCM residue,pine sawdust and paper towel using 2-MeTHF, THF, 1-BuOH or EtOH as the co-solvent.

Fig. S1. Normalized distribution of biocrude fractions for TCM residue, pine sawdust and paper towel by using DCM or 2-MeTHF as extractant.

Fig. S2. Normalized distribution of biocrude fractions for HTL of TCM residue, pine sawdust and paper towel over 0.1 M NaOH catalyst.

Fig. S3. Normalized distribution of biocrude fractions for HTL of TCM residue, pine sawdust and paper towel with 2-MeTHF, THF, 1-BuOH or EtOH as the co-solvents (5 mL).

Fig. S4. Normalized distribution of biocrude fractions for HTL of TCM residue, pine sawdust and paper towel with increasing amount of 2-MeTHF co-solvent.

Fig. S5. Normalized distribution of biocrude fractions for HTL of TCM residue, pine sawdust and paper towel with 2-MeTHF, THF, 1-BuOH or EtOH as the co-solvents (5 mL).