## **Elestronic Supplementary Information for**

# Task Specific Ionic Liquids and Ultrasounds Irradiation: A Successful Strategy to Drive the Alcoholysis of Polycarbonate

Francesca D'Anna,\* Giovanna Raia, Gianluca Di Cara, Patrizia Cancemi, Salvatore Marullo

<sup>a</sup>Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Chimica. Viale delle Scienze, Ed. 17 90128 Palermo (Italy)

<sup>a</sup>Università degli Studi di Palermo, Dipartimento STEBICEF, Sezione di Biologia Cellulare, Viale delle Scienze, Ed. 16 90128 Palermo

Email: francesca.danna@unipa.it

| Task specific ionic Liquids Characterization                                                                                              | Page S4-S6 |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Table S1. Conversion and Yields values for the                                                                                            | Page S6    |
| methanolysis of BPA-PC, under US irradiation (50 W;                                                                                       |            |
| 250 kHz), at 30 °C, in the presence of                                                                                                    |            |
| tetramethylguanidinium-based TSILs ( $n_c/n_{RU} = 1/12$ ).                                                                               |            |
| Table S2. Conversion and Yields values for the                                                                                            | Page S7    |
| methanolysis of BPA-PC, under US irradiation (50 W;                                                                                       |            |
| 250 kHz), at 30 °C, for 120 minutes, in the presence of                                                                                   |            |
| imidazolate-based TSILs ( $n_c/n_{RU} = 1/12$ ; $m_{2-MeTHF}/m_{MeOH}$                                                                    |            |
| = 3).                                                                                                                                     |            |
| Table S3. Conversion and Yields values for the                                                                                            | Page S7    |
| methanolysis of BPA-PC, under US irradiation (50 W;                                                                                       |            |
| 250 kHz), at 30 °C, for 120 minutes, in the presence of                                                                                   |            |
| [TMG <sup>+</sup> ]-, [C <sub>1</sub> C <sub>2</sub> OHPyrr <sup>+</sup> ]- and [C <sub>1</sub> C <sub>2</sub> OHMor <sup>+</sup> ]-based |            |
| TSILs ( $n_c/n_{RU} = 1/12; m_{2-MeTHF}/m_{MeOH} = 3$ ).                                                                                  |            |
| Table S4. Hammett basicity function (H.) determined for                                                                                   | Page S8    |
| TSILs, using <i>p</i> -nitrophenol as probe.                                                                                              |            |
| Table S5. Conversion and Yield values for the                                                                                             | Page S8    |
| methanolysis of BPA-PC, under US irradiation (50 W;                                                                                       |            |
| 250 kHz), at 30 °C, in the presence of [TMG][Im] and                                                                                      |            |
| $[C_1C_2OHMor][Im]$ (n <sub>c</sub> /n <sub>RU</sub> = 1/12; m <sub>2-MeTHF</sub> /m <sub>MeOH</sub> = 3),                                |            |
| at different reaction times.                                                                                                              |            |
| Table S6. Conversion and Yield values for the                                                                                             | Page S8    |
| methanolysis of BPA-PC, under US irradiation (50 W;                                                                                       |            |
| 250 kHz), at 30 °C, in the presence of [C1C2OHMor][Im]                                                                                    |            |
| $(m_{2-MeTHF}/m_{MeOH} = 3)$ , at different $n_c/n_{ru}$ ratios.                                                                          |            |
| Table S7. Conversion and Yield values for the                                                                                             | Page S9    |
| methanolysis of BPA-PC, under US irradiation (50 W;                                                                                       |            |

250 kHz), at 30 °C, in the presence of [C<sub>1</sub>C<sub>2</sub>OHMor][Im] ( $n_c/n_{RU} = 1/12$ ;), at different m<sub>2-MeTHF</sub>/m<sub>MeOH</sub> ratios.

**Table S8.** Conversion and Yield values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, in the presence of [C<sub>1</sub>C<sub>2</sub>OHMor][Im] ( $n_e/n_{RU} = 1/12$ ;  $m_{2-MeTHF}/m_{MeOH} = 3$ ), at different temperatures.

**Table S9.** Conversion and Yield values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, in the presence of different catalysts ( $n_c/n_{RU} = 1/12$ ;  $m_{2-MeTHF}/m_{MeOH} = 3$ ).

**Table S10.** Chemical shift values of imidazolate anion in  $[C_1C_2OHPip][Im]$  and  $[C_1C_2OHMor][Im]$  and **corresponding** mixture in the presence of MeOH ( $n_{MeOH}/n_c = 4.2$ ).

**Table S11.** Conversion and Yield values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, in the presence of different nucleophiles ( $n_c/n_{RU} = 1/12$ ;  $m_{2-MeTHF}/m_{MeOH} = 3$ ).

**Table S12.** Evaluation of methanolysis of BPA-PC, according to the holistic approach to Green Chemistry, performed using different catalysts, under under US irradiation (50 W; 250 kHz), at 30 °C, (n<sub>c</sub>/n<sub>RU</sub> = 1/12; m<sub>2-MeTHF</sub>/m<sub>MeOH</sub> = 3). Colors account for: red:< 70%; yellow: 70-89%; green: > 89%.

Table S13. IC50 values obtained after 48h of treatmentwith[TMG][Im],[C1C2OHMor][Im]and[C222C2OH][Im]in HB2 and hTERT RPE-1epithelialnormal cell lines.

**Table S14.** Conversion and yield values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, in the presence of [C<sub>1</sub>C<sub>2</sub>OHMor][Im] ( $n_c/n_{RU} = 1/12$ ;  $m_{2-MeTHF}/m_{MeOH} = 3$ ), as a function of sample nature.

Figure S1. <sup>1</sup>HNMR spectra of: a)  $[C_1C_2OHPip][Im]$ ; b)  $[C_1C_2OHPip][Im]$  in the presence of methanol ( $n_{MeOH}/n_C = 4.2$ ); c)  $[C_1C_2OHMor][Im]$ ; d)  $[C_1C_2OHPip][Im]$  in the presence of methanol ( $n_{MeOH}/n_C = 4.2$ ).

**Figure S2.** <sup>1</sup>H NMR spectra of  $[C_1C_2OHMor][Im]$  after sonication (top) and after reaction (bottom).

Page S9

Page S9

Page S10

Page S10

Page S11

Page S11

Page S11

Page S12-S13

Page S14

**Figure S3.** <sup>1</sup>H NMR, <sup>13</sup>C NMR and IR spectra of BPA obtained from methanolysis of PC from CD. **Figure S4.** <sup>1</sup>H NMR, <sup>13</sup>C NMR spectra of catalysts.

Page S15-S16

Page S16-S34

## **Experimental Section**

Task specific ionic Liquids Characterization Tetramethylguanidinium imidazolate [TMG][Im] Yellow oil. Yield: 90%. <sup>1</sup>H NMR, (300 MHz, CDCl<sub>3</sub>)  $\delta$  = 2.76 (s, 12H); 7.08 (s, 1H); 7.28 (s, 1H); 7.67 (s, 1H) ppm. <sup>13</sup>C NMR, (300 MHz, CDCl<sub>3</sub>)  $\delta$  = 39.3, 121.9, 135.2, 167.5 ppm.

## *Tetramethylguanidinium succinimidate [TMG][Succ]*

Yellow oil. Yield: 92%. <sup>1</sup>H NMR (300 MHz, D<sub>2</sub>O)  $\delta$  = 2.51 (s, 4 H); 2.84 (s, 12 H) ppm. <sup>13</sup>C NMR (300 MHz, D<sub>2</sub>O)  $\delta$  = 29.4, 30.1, 31.4, 32.6, 39.0, 161.2, 178.9, 181.0 ppm.

## *Tetramethylguanidinium Lysinate [TMG][Lys]*

Yellow solid. Yield: 87%. <sup>1</sup>H NMR, (300 MHz, D<sub>2</sub>O)  $\delta$ = 1.27 (m, 2H), 1.51 (m, 4H), 2.80 (s, 1H), 2.84 (s, 12 H), 3.19 (t, 1H, J=6Hz) ppm. <sup>13</sup>C NMR, (300 MHz, D<sub>2</sub>O)  $\delta$ = 21.89, 27.49, 33.26, 38.82, 39.42, 55.51, 161.63, 182.16 ppm.

## Tetramethylguanidinium Glycinate [TMG][Gly]

Yellow solid. Yield: 73%. <sup>1</sup>H NMR (300 MHz, D<sub>2</sub>O)  $\delta$  = 2.80 (s, 12H); 2.90 (s, 2H); 3.22 (s, 2H); 3.67 (s, 2H) ppm.

## N-methyl-N-(2-hydroxyethyl)pyrrolidinium Bromide

Colorless oil. Yield: 78%. <sup>1</sup>H NMR (300 MHz, DMSO)  $\delta$ = 2.07 (s, 4H), 3.04 (s, 3H), 3.44 (t, 2H, J=3 Hz), 3.52 (m, 4H), 3.82 (s, 2H), 5.29 (m, 1H) ppm.

## N-methyl-N-(2-hydroxyethyl)piperidinium Bromide

Colorless oil. Yields: 82%. <sup>1</sup>H NMR (300 MHz, D<sub>2</sub>O)  $\delta$ = 1.50 (s, 2H), 1.72 (s, 4H), 2.98 (s, 3H), 3.26 (m, 4H), 3.37 (m, 2H) 3.90 (s, 2H) ppm.

## N,N,N-triethyl-(2-hydroxyethyl)ammomium Bromide

White solid. Yield: 61%. <sup>1</sup>H NMR, (300 MHz, DMSO) δ= 1.20 (m, 9H), 3.31 (m, 8H), 3.77 (m, 2H), 5.26 (t, 1H, J=6Hz) ppm.

## N-methyl-N-(2-hydroxyethyl)morpholinium Bromide

Colorless oil. Yield: 83%. <sup>1</sup>H NMR, (300 MHz, D<sub>2</sub>O) δ= 3.24 (s, 3H), 3.35 (s, 1H), 3.49 (m, 3H), 3.62 (m, 2H), 3.86 (m, 2H), 3.93 (m, 3H), 5.32 (t, 1H, J=6Hz) ppm.

#### N-methyl-N-(2-hydroxyethyl)imidazolium Bromide

Orange solid. Yield: 94%. <sup>1</sup>H NMR, (300 MHz, DMSO) δ= 3.71(s, 2H), 3.87 (s, 3H), 4.23 (s, 2H), 5.17 (s, 1H), 7.74 (d, 2H), 9.18 (s, 1H) ppm.

#### *N*,*N*-bis(2-hydroxyethyl)1,4-diazabicyclo[2.2.2]octane Bromide

White solid. Yield: 84% <sup>1</sup>H NMR, (300 MHz, DMSO)  $\delta$ = 3.66 (m, 4H), 3.89 (s, 4H), 4.02 (s, 12H) ppm.

#### *N-methyl-N-ethylmorpholinium Iodide*

Colorless solid. Yield: 85% <sup>1</sup>H NMR, (300 MHz, DMSO)  $\delta$ = 1.25 (t, 3H, J= 6 Hz), 3.10 (s, 3H), 3.39 (m, 4H), 3.50 (m, 2H), 3.91 (m, 4H) ppm. <sup>13</sup>C (400 MHz, DMSO)  $\delta$ = 7.2, 46.0, 58.9, 59.8, 60.3 ppm.

#### *N-methyl-N-(2-hydroxy)ethylpyrrolidinium Imidazolate* [C<sub>1</sub>C<sub>2</sub>OHPyrr][Im]

Yellow oil. Yield: 72% <sup>1</sup>H NMR, (300 MHz, DMSO)  $\delta$ = 2.06 (s, 3H), 3.04 (s, 2H), 3.40 (t, 2H, J=6Hz), 3.51 (d, 3H, J=6Hz), 3.84 (s, 2H), 5.16 (s, 3H), 6.74 (s, 2H), 7.21 (s, 1H) ppm. <sup>13</sup> CNMR, (300 MHz, DMSO)  $\delta$  = 21.3, 48.3, 55.4, 64.6, 65.5, 124.1, 140.7 ppm.

#### *N*-methyl-*N*-(2-hydroxy)ethylpyrrolidinium Succinimidate [C<sub>1</sub>C<sub>2</sub>OHPyrr][Im]

Yellow oil. Quantitative yield. <sup>1</sup>H NMR, (300 MHz, D<sub>2</sub>O)  $\delta$ = 2.17 (s, 4H), 2.41 (s, 1H), 2.67 (s, 3H), 2.90 (s, 1H), 3.00 (s, 3H), 3.50 (m, 5H) 3.98 (s, 2H) ppm. <sup>13</sup>C NMR, (300 MHz, D<sub>2</sub>O)  $\delta$  = 21.3, 30.4, 48.28, 55.7, 64.5, 65.1, 175.9, 182.1 ppm.

## *N-methyl-N-(2-hydroxyethyl)-piperidinium Imidazolate* [C<sub>1</sub>C<sub>2</sub>OHPip][Im]

Yellow oil. Quantitative yield. <sup>1</sup>H NMR, (300 MHz, DMSO)  $\delta$ = 1.52 (m, 2H), 1.78 (m, 4H), 3.09 (s, 3H), 3.35 (quint., 2H), 3.41 (m, 4H) 3.85 (s, 2H), 6.76 (s, 2H) 7.24 (s, 1H) ppm. <sup>13</sup>C NMR (300 MHz, DMSO)  $\delta$  =19.8, 21.0, 49.12, 54.35, 61.24, 64.89, 124.16, 140.7 ppm.

#### *N-methyl-N-(2-hydroxyethyl)-morpholinium Imidazolate* [C<sub>1</sub>C<sub>2</sub>OHMor][Im]

Yellow oil. Quantitative yield. <sup>1</sup>H NMR, (300 MHz, DMSO)  $\delta$ =3.22 (s, 3H), 3.46 (m, 2H), 3.57 (m, 4H), 3.91 (s, 6H), 5.93 (s, 1H), 6.80 (s, 2H), 7.31 (s, 1H) ppm.<sup>13</sup>C NMR, (300 MHz, DMSO)  $\delta$  = 48.3, 54,5, 60.2, 60.3, 65.3, 124.5, 140.7 ppm.

#### *N-methyl-N-(2-hydroxyethyl)-morpholinium succinimidate* [C<sub>1</sub>C<sub>2</sub>OHMor][Succ]

Colorless oil. Quantitative yield. <sup>1</sup>H NMR, (300 MHz, CD<sub>3</sub>OD)  $\delta$ = 1.69 (s, 2H), 1.93 (s, 1H), 2.56 (s, 3H), 2.78 (m, 2H), 2.92 (m, 3H), 3.28 (m, 5H), 4.13 (s, 3H). <sup>13</sup>C NMR, (300 MHz, DMSO)  $\delta$ = 30.1, 33.4, 34.5, 48.2, 54.9, 60.3, 176.3, 180.9 ppm.

## N-methyl-N-(2-hydroxyethyl)-morpholinium phosphate [ $C_1C_2OHMor$ ]<sub>3</sub>[ $PO_4$ ]

Colorless oil. Quantitative yield <sup>1</sup>H NMR, (300 MHz, CD<sub>3</sub>OD)  $\delta$ = 3.18 (s, 9H), 3.40 (m, 6H), 3.53 (m, 12H), 3.86 (s, 18H) ppm. <sup>13</sup>C NMR, (300 MHz, DMSO)  $\delta$  = 47.8, 54.6, 59.9, 60.3, 65.5 ppm.

## *Triethyl-(2-hydroxyethyl)-ammonium imidazolate* [C<sub>222</sub>C<sub>2</sub>OHN][Im]

Yellow oil. Quantitative yield. <sup>1</sup>H NMR, (300 MHz, CD<sub>3</sub>OD)  $\delta$ = 1.33 (t, 9H, J<sub>1</sub>=7 Hz), 3.44 (m, 5H), 3.96 (m, 2H), 5.02 (s, 3H), 7.06 (s, 2H), 7.69 (s, 1H) ppm. <sup>13</sup>C NMR, (300 MHz, DMSO)  $\delta$ = 12.5, 57.9, 59.2, 63.6, 128.5, 144.7 ppm.

## N-methyl-N-ethylmorpholinium imidazolate [ $C_1C_2Mor$ ][Im]

Orange oil. Quantitative yield. <sup>1</sup>H NMR, (300 MHz, DMSO)  $\delta = 1.22$  (s, 3H), 3.09 (s, 3H), 3.38 (s, 4H), 3.50 (q, 2H), 3.88 (s, 4H), 6.45 (s, 1H), 6.82 (s, 1H), 7.34 (s, 1H) ppm. <sup>13</sup>C NMR, (300 MHz, DMSO)  $\delta = 7.3, 45.2, 58.8, 59.7, 60.2, 123.6, 139.4$  ppm.

## *1-ethyl-3-methylimidazolium chloride* [C<sub>1</sub>C<sub>2</sub>Im][Cl]

Colorless oil. Yield: 99% <sup>1</sup>H NMR, (300 MHz, DMSO) δ= 1.40 (t, 3H, J=7 Hz), 3.87 (s, 3H), 4.21 (m, 2H), 7.79 (s, 1H), 7.89 (s, 1H), 9.51(s, 1H) ppm. <sup>13</sup>C NMR, (300 MHz, DMSO) δ=20.4, 40.9, 49.3, 127.2, 128.8, 141.6 ppm.

#### *1-methyl-3-(2-hydroxyethyl)imidazolium chloride* [*C*<sub>1</sub>*C*<sub>2</sub>*OHIm*][*Cl*]

Yellow oil. Yield: 88%. <sup>1</sup>H NMR, (300 MHz, DMSO)  $\delta$ = 3.71 (t, 2H, J<sub>1</sub>=5 Hz), 3.88 (s, 3H), 4.25 (t, 2H, J<sub>1</sub>=5 Hz), 7.74 (s, 1H), 7.78 (s,1H), 9.32 (s, 1H exch.) ppm. <sup>13</sup>C NMR, (300 MHz, DMSO)  $\delta$  = 36.1, 52.0, 59.7, 123.1, 123.7, 137.4 ppm.

**Table S1.** Conversion and Yields values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, in the presence of tetramethylguanidinium-based TSILs ( $n_c/n_{RU} = 1/12$ ). Conversion and yield values were reproducible within  $\pm 3\%$ .

| TSIL      | m2-methf/mmeoh | <b>Reaction Time</b> | Conversion (%) | Yield (%) |
|-----------|----------------|----------------------|----------------|-----------|
|           |                | (min)                |                |           |
| [TMG][Im] | 3              | 105                  | 72             | 57        |
|           | 3              | 120                  | 85             | 81        |
|           | 3              | 135                  | 84             | 78        |

**Table S2.** Conversion and Yields values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, for 120 minutes, in the presence of imidazolate-based TSILs ( $n_e/n_{RU} = 1/12$ ;  $m_{2-MeTHF}/m_{MeOH} = 3$ ). Conversion and yield values were reproducible within  $\pm 3\%$ .

| TSIL                                       | Conversion (%) | Yield (%) |
|--------------------------------------------|----------------|-----------|
| [TMG][Im]                                  | 85             | 81        |
| [C <sub>1</sub> C <sub>2</sub> OHPip][Im]  | 75             | 67        |
| [C <sub>1</sub> C <sub>2</sub> OHPyrr][Im] | 74             | 71        |
| [C1C2OHMor][Im]                            | 86             | 82        |
| [C222C2OHN][Im]                            | 79             | 77        |
| [(C2OH)2DABCO][Im]2                        | 59             | 52        |
| [Ch][Im]                                   | 83             | 78        |

**Table S3.** Conversion and Yields values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, for 120 minutes, in the presence of [TMG<sup>+</sup>]-, [C<sub>1</sub>C<sub>2</sub>OHPyrr<sup>+</sup>]- and [C<sub>1</sub>C<sub>2</sub>OHMor<sup>+</sup>]-based TSILs ( $n_c/n_{RU} = 1/12$ ;  $m_{2-M_{eTHF}/m_{MeOH}} = 3$ ). Conversion and yield values were reproducible within  $\pm 3\%$ .

| TSIL                                                                  | Conversion (%) | Yield (%) |
|-----------------------------------------------------------------------|----------------|-----------|
| [TMG][Im]                                                             | 85             | 81        |
| [TMG][Succ]                                                           | 38             | 38        |
| [TMG][Lys]                                                            | 8              | 8         |
| [TMG][Gly]                                                            | 0              | 0         |
| [C <sub>1</sub> C <sub>2</sub> OHPyrr][Im]                            | 74             | 71        |
| [C <sub>1</sub> C <sub>2</sub> OHPyrr][Succ]                          | 59             | 44        |
| [C1C2OHMor][Im]                                                       | 86             | 82        |
| [C <sub>1</sub> C <sub>2</sub> OHMor][Succ]                           | 40             | 32        |
| [C <sub>1</sub> C <sub>2</sub> OHMor] <sub>3</sub> [PO <sub>4</sub> ] | 67             | 67        |
|                                                                       |                |           |

| TSIL               | H.    |
|--------------------|-------|
| [TMG][Gly]         | 10.53 |
| [TMG][Lys]         | 10.76 |
| [TMG][Succ]        | 11.44 |
| [TMG][Im]          | 10.85 |
| [C1C2OHPyrr][Succ] | 10.51 |
| [C1C2OHPyrr][Im]   | 11.51 |
| [C1C2OHMor][Succ]  | 10.33 |
| [C1C2OHMor]3[PO4]  | 10.60 |
| [C1C2OHMor][Im]    | 10.76 |

Table S4. Hammett basicity function (*H*-) determined for TSILs, using *p*-nitrophenol as probe.

**Table S5.** Conversion and Yield values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, in the presence of **[TMG][Im]** and **[C<sub>1</sub>C<sub>2</sub>OHMor][Im]** ( $n_c/n_{RU} = 1/12$ ;  $m_{2-MeTHF}/m_{MeOH} = 3$ ), at different reaction times. Conversion and yield values were reproducible within  $\pm 3\%$ .

|                     | [TMG][         | Im]       | [C <sub>1</sub> C <sub>2</sub> OHN | lor][Im]  |
|---------------------|----------------|-----------|------------------------------------|-----------|
| Reaction Time (min) | Conversion (%) | Yield (%) | Conversion (%)                     | Yield (%) |
| 80                  |                |           | 68                                 | 68        |
| 90                  |                |           | 88                                 | 82        |
| 105                 | 72             | 57        | 85                                 | 84        |
| 120                 | 85             | 81        | 86                                 | 82        |
| 135                 | 84             | 78        |                                    |           |

**Table S6.** Conversion and Yield values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, in the presence of [C<sub>1</sub>C<sub>2</sub>OHMor][Im] (m<sub>2-MeTHF</sub>/m<sub>MeOH</sub> = 3), at different n<sub>c</sub>/n<sub>ru</sub> ratios. Conversion and yield values were reproducible within  $\pm$  3%.

| n <sub>c</sub> /n <sub>ru</sub> | Conversion (%) | Yield (%) |
|---------------------------------|----------------|-----------|
| 1/6                             | 88             | 87        |
| 1/12                            | 86             | 82        |
| 1/18                            | 74             | 74        |

**Table S7.** Conversion and Yield values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, in the presence of [C<sub>1</sub>C<sub>2</sub>OHMor][Im] (n<sub>c</sub>/n<sub>RU</sub> = 1/12;), at different m<sub>2-MeTHF</sub>/m<sub>MeOH</sub> ratios. Conversion and yield values were reproducible within  $\pm$  3%.

| m2-methf/mmeOH | Conversion (%) | Yield (%) |
|----------------|----------------|-----------|
| 5/3            | 69             | 63        |
| 6/2            | 88             | 82        |
| 7/1            | 62             | 62        |

**Table S8.** Conversion and Yield values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, in the presence of [C<sub>1</sub>C<sub>2</sub>OHMor][Im] ( $n_c/n_{RU} = 1/12$ ;  $m_{2-MeTHF}/m_{MeOH} = 3$ ), at different temperatures. Conversion and yield values were reproducible within  $\pm 3\%$ .

| T (°C) | Conversion (%) | Yield (%) |
|--------|----------------|-----------|
| 20     | 78             | 78        |
| 30     | 88             | 82        |
| 40     | 78             | 72        |

**Table S9.** Conversion and Yield values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, in the presence of different catalysts ( $n_c/n_{RU} = 1/12$ ;  $m_{2-MeTHF}/m_{MeOH} = 3$ ). Conversion and yield values were reproducible within  $\pm 3\%$ .

| Conversion (%) | Yield (%)                                         |
|----------------|---------------------------------------------------|
| 63             | 63                                                |
| 0              | 0                                                 |
| 88             | 82                                                |
| 83             | 77                                                |
| 82             | 66                                                |
|                | Conversion (%)<br>63<br>0<br>88<br>83<br>83<br>82 |

|                   | [C1C2OHPip][Im] | [C1C2OHPip][Im]+ MeOH | MeOH |
|-------------------|-----------------|-----------------------|------|
| δ (ppm)           | 7.24            | 7.46                  |      |
| Imidazolate anion | 6.76            | 6.89                  |      |
| δ (ppm)<br>MeOH   |                 | 4.14                  | 4.01 |
|                   | [C1C2OHMor][Im] | [C1C2OHMor][Im]+ MeOH | MeOH |
| δ (ppm)           | 7.31            | 7.41                  |      |
| Imidazolate anion | 6.80            | 6.86                  |      |
| δ (ppm)           |                 | 4.10                  | 4.01 |
| MeOH              |                 |                       |      |

Table S10. Chemical shift values of imidazolate anion in [C<sub>1</sub>C<sub>2</sub>OHPip][Im] and [C<sub>1</sub>C<sub>2</sub>OHMor][Im] and corresponding mixture in the presence of MeOH ( $n_{MeOH}/n_c = 4.2$ ).

**Table S11.** Conversion and Yield values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, in the presence of different nucleophiles ( $n_c/n_{RU} = 1/12$ ;  $m_{2-MeTHF}/m_{MeOH} = 3$ ). Conversion and yield values were reproducible within  $\pm 3\%$ .

| Conversion (%) | Yield (%)                                          |
|----------------|----------------------------------------------------|
| 88             | 82                                                 |
| 52             | 52                                                 |
| 75             | 73                                                 |
| 48             | 38                                                 |
| 43             | 43                                                 |
| 42             | 33                                                 |
|                | Conversion (%)<br>88<br>52<br>75<br>48<br>43<br>42 |

**Table S12.** Evaluation of methanolysis of BPA-PC, according to the holistic approach to Green Chemistry, performed using different catalysts, under under US irradiation (50 W; 250 kHz), at 30 °C, ( $n_c/n_{RU} = 1/12$ ;  $m_{2-MeTHF}/m_{MeOH} = 3$ ). Colors account for: red:< 70%; yellow: 70-89%; green: > 89%.



Table S13. IC<sub>50</sub> values obtained after 48h of treatment with [TMG][Im], [C<sub>1</sub>C<sub>2</sub>OHMor][Im] and [C<sub>222</sub>C<sub>2</sub>OH][Im] in HB2 and hTERT RPE-1epithelial normal cell lines.

| Catalyst                                  | HB2 (mM)      | hTERT-RPE-1   |
|-------------------------------------------|---------------|---------------|
|                                           |               | (mM)          |
| [TMG][Im]                                 | $2.83\pm0.19$ | $2.52\pm0.27$ |
| [C <sub>1</sub> C <sub>2</sub> OHMor][Im] | $0.97\pm0.14$ | $0.84\pm0.04$ |
| [C222C2OHN][Im]                           | $1.15\pm0.07$ | $0.90\pm0.03$ |

**Table S14.** Conversion and yield values for the methanolysis of BPA-PC, under US irradiation (50 W; 250 kHz), at 30 °C, in the presence of [C<sub>1</sub>C<sub>2</sub>OHMor][Im] (n<sub>c</sub>/n<sub>RU</sub> = 1/12; m<sub>2-MeTHF</sub>/m<sub>MeOH</sub> = 3), as a function of sample nature. Conversion and yield values were reproducible within  $\pm$  3%.

| Sample        | Conversion (%) | Yield (%) |
|---------------|----------------|-----------|
| Digital CD    | 90             | 70        |
| BPA-PC sheet  | 94             | 83        |
| BPA-PC grains | 86             | 82        |



b)





**Figure S1.** <sup>1</sup>HNMR spectra of: a) [C<sub>1</sub>C<sub>2</sub>OHPip][Im]; b) [C<sub>1</sub>C<sub>2</sub>OHPip][Im] in the presence of methanol ( $n_{MeOH}/n_{C} = 4.2$ ); c) [C<sub>1</sub>C<sub>2</sub>OHMor][Im]; d) [C<sub>1</sub>C<sub>2</sub>OHPip][Im] in the presence of methanol ( $n_{MeOH}/n_{C} = 4.2$ ).



Figure S2. <sup>1</sup>H NMR spectra of [C<sub>1</sub>C<sub>2</sub>OHMor][Im] after sonication (top) and after reaction (bottom).





c)

Figure S3. <sup>1</sup>H NMR (a), <sup>13</sup>C NMR (b) and IR (c) spectra of BPA obtained from methanolysis of PC from CD.







S18













S24





















S34