Supporting Information

Lanthanide promoted nickel catalysts for the integrated capture and conversion of carbon dioxide to methane via metal carbonates

Christopher J. Koch, Zohaib Suhail, Prince, Anushan Alagaratnam, Matthew Coe, Alain Goeppert, G.K. Surya Prakash*

Contents

Additional Optimization Data

[Table](#page-1-1) S1 corresponds to the data shown in Figure 5, where various carbonate salts were tested for the conversion to methane with the 50% Ni/12.5% Yb/Al₂O₃ catalyst.

Table S1. Conversion of various carbonate salt to methane over 50% Ni/12.5% Yb/Al₂O₃.

Conditions: 10 mmol carbonate salt, 10mL DI H₂O, 225°C, 300 mg 50% Ni/12.5% Yb/Al₂O₃, 50 bar H₂ at room temperature, 24 hours, ^[a] 6 hours, 50 mg 50% Ni/12.5% Yb/Al₂O₃, 250°C, 50 bar H₂, 10 mL H₂O. ^[b] No CO or $CO₂$ detected in any of the reactions. Yields calculated from the gas phase by gas chromatography are within ±5% error.

Gas Chromatography Data

A gas Chromatogram (GC) of the gaseous phase was collected after each experiment to quantify the gases produced during the reaction. An example of a chromatogram obtained after the reaction of K₂CO₃ in 10 mL DI H₂O over 50% Ni/12.5% Yb/Al₂O₃ at 225°C, 50 bar H₂ and 24h is shown in [Figure](#page-2-1) S1 and [Figure](#page-3-0) S2. Figure S1 shows the full chromatogram, while Figure S2 excludes the H₂ for increased visibility of the CH₄ peak. In the chromatogram, H₂ appears at 1.8 minutes, N₂ at 2.3 minutes, and CH₄ at 4.5 minutes. If CO and CO₂ were present they would show at 2.5 and 8.6 minutes, respectively. N₂ originates from the atmosphere during the injection and is therefore present in the chromatogram. The peaks in these chromatograms were then integrated and the amount of CH_4 produced (in mmol) was calculated using the gas law equation as shown in [Equation](#page-3-1) S1.

Figure S1. Gas Chromatography of a high yielding reaction from 0 to 14 minutes (conditions: 300 mg 50% Ni/12.5% Yb/Al₂O₃, 225°C, 50 bar H₂, 10 mL DI H₂O, 10 mmol K₂CO₃, 24 h). Expansion for CH₄ is shown in Figure S2.

[Figure](#page-3-0) S2 showcases more clearly that the only peaks present are at 2.3 and 4.5 minutes, which correspond to N_2 and CH₄ respectively. There was no CO or CO₂ observed.

Figure S2. Gas Chromatography of high yielding reaction from 2 to 14 minutes (conditions: 300 mg 50% Ni/12.5% Yb/Al₂O₃, 225°C, 50 bar H₂, 24 h, 10 mL DI H₂O, 10 mmol K₂CO₃).

The amount of methane was quantified through the integration values obtained from the GC. For example, in the chromatograms shown in [Figure](#page-3-0) S1 and Figure S2 there is 98.71% H₂ and 1.29% CH₄. Nitrogen is excluded from the calculation (it is due to air present during the injection using a gas syringe). The integration values were normalized to account for the different response factors of the gases. The normalized integration values were 95.20% H_2 and 4.80% CH₄. The pressure prior to releasing the gas was recorded and used for the next step to calculate the partial pressure of $CH₄$. The pressure prior to release for this experiment was 585 psi, which equates to there being 28.05 psi of CH₄ in the reactor. The unit of pressure was then converted to atm $(1.91 \text{ atm } CH_4)$. Then this partial pressure was used in gas law [\(Equation](#page-3-1) S1) to calculate the mmol of CH_4 obtained in the reaction, which is shown in [Equation](#page-3-2) S2. The temperature that is used for the calculation is the temperature at the time of the release of the gas. After using gas law equation, there was 10 mmol of methane in the gas released from the reactor, which corresponds to the observed 100% yield.

$$
n = \frac{PV}{RT}
$$

Equation S1. Gas Law equation, where the known variables (P (pressure of reactor), V (volume of reactor), R (gas constant), and T (temperature of reactor in Kelvin) are on the same side of the equation.

mol of methane =
$$
\frac{(1.91 \text{ atm})(0.130 \text{ L})}{(27.0 \text{ °C} + 273.15)(0.0821 \frac{\text{atm} * L}{\text{mol} * K})}
$$

Equation S2. Example calculation showing the amount of methane (mol) produced, where the volume is the volume of the reactor was 0.130 L, the temperature is the temperature at which the gas is released, and R is the ideal gas constant.

NMR Data

Nuclear Magnetic Resonance (NMR) spectra were collected for the experiment with K_2 ¹³CO₃ to determine if ¹³CH₄ had been obtained. [Figure](#page-4-1) S3 shows the ¹H NMR of the gas mixture after the reaction of K₂¹³CO₃ with H₂ over 50% Ni/12.5% Yb/Al₂O₃. This was done by bubbling parts of the reaction gas mixture through toluene-d₈. Both H₂ and H₂O are present in the spectrum as H₂ was used in excess during the reaction and water is the reaction's solvent and its vapors are also present in the gas phase. $CH₄$ is also present in the ¹H NMR and appears as a doublet centered around 0.17 ppm, indicating that $13CH₄$ had been synthesized.

Figure S3. ¹HNMR of the gas mixture after the reaction with K_2 ¹³CO₃ (conditions: 300 mg 50% Ni/12.5% Yb/Al₂O₃, 225°C, 50 bar H₂,24 hours, 10 mL DI H₂O, 10 mmol K₂¹³CO₃).

Figure S4. ¹HNMR zoomed between -0.05 and 0.5 ppm of the gas mixture after the reaction with K₂¹³CO₃ (conditions: 300 mg 50% Ni/12.5% Yb/Al₂O₃, 225°C, 50 bar H₂,24 hours, 10 mL DI H₂O, 10 mmol K₂¹³CO₃).

[Figure](#page-6-0) S5 shows the ¹³C NMR of the gas phase for the same reaction, where methane is present at 0.34 ppm. No other carbon containing gas was present in the spectrum, indicating ¹³CH₄ was synthesized selectively.

Figure S5. 13 CNMR of the gas mixture after reaction with K₂¹³CO₃ (conditions: 300 mg 50% Ni/12.5% Yb/Al₂O₃, 225°C, 50 bar H₂, 24 hours, 10 mL DI H₂O, 10 mmol K₂¹³CO₃).

[Figure](#page-7-0) S6 shows the ¹³C NMR of the solution of the direct air capture experiment from which the amount of CO_2 captured was quantified. The captured CO_2 is in the form of potassium carbonate and appears at 167.2 ppm. An internal standard of imidazole was added to reference the ¹³C NMR in D₂O to quantify the amount of $CO₂$ captured in the form of carbonate.

Figure S6. ¹³C NMR of direct air capture media (capture conditions: 300 mL/min air, 72 hours).

XRD Data

X-ray diffraction (XRD) spectra were collected of the following unreacted and reacted catalysts. [Figure](#page-9-0) S7 shows 50% Ni/12.5% Yb/Al₂O₃ before the reaction. Figure S8 shows the catalyst after one reaction cycle. The presence of boehmite peaks occurs from interactions between hydroxide and alumina. However, the catalyst from the recycling experiments in [Figure](#page-9-1) S9 does not show significant boehmite peaks because less carbonate was utilized for this set of experiments. There was less hydroxide to interact with the alumina. In [Figure](#page-10-1) S10 and Figure S11, 12% Ni/3% Ce/Al2O3 catalyst did not have a significant presence of boehmite because less carbonate was hydrogenated to form hydroxide.

Figure S7. XRD of 50% Ni/12.5% Yb/Al₂O₃ before reaction.

Figure S8. XRD of 50% Ni/12.5% Yb/Al₂O₃ after reaction (conditions: 300 mg 50% Ni/12.5% Yb/Al₂O₃, 225°C, 50 bar H₂, 24 hours, 10 mL DI H₂O, 10 mmol K₂CO₃).

Figure S9. XRD after 5 cycles of reactivity with 50% Ni/12.5% Yb/Al₂O₃ (conditions: 300 mg 50% Ni/12.5% Yb/Al₂O₃, 225°C, 50 bar H₂, 24 hours, 10 mL DI H₂O, 4 mmol K₂CO₃ used in the first cycle).

Figure S10. XRD of 12% Ni/3% Ce/Al₂O₃ before reaction.

Figure S11. XRD of 12% Ni/3% Ce/Al₂O₃ after reaction. (conditions: 300 mg catalyst, 225°C, 50 bar H₂, 24 hours, 10 mL DI H_2O , 10 mmol K_2CO_3)

Figure S12. XRD of alumina.

d-space is calculated with Bragg's law, all calculation errors are shown in parentheses, error is ± the number in parentheses referenced to the last digit.

Scanning Electron Microscopy (SEM) Images

SEM images were collected for the 50% Ni/12.5% Yb/Al₂O₃ catalyst to identify possible morphology changes in the catalyst during the reactions. Looking at [Figure](#page-12-1) S13 and [Figure](#page-13-0) S14, no obvious or major morphology changes in the catalyst could be observed after the reaction when compared to before the reaction. The morphology of the catalyst is further changed over more cycles of reactivity as shown in [Figure](#page-14-0) S15. All samples experienced charging, which decreased the resolution of the image. The charging was worse for the sample after the reaction due to other components, like hydroxide salts, being in the sample.

Figure S13. SEM Image of the 50% Ni/12.5% Yb/Al₂O₃ catalyst before reaction.

Figure S14. SEM Image of the 50% Ni/12.5% Yb/Al₂O₃ catalyst after reaction (conditions: 300 mg 50% Ni/12.5% Yb/Al₂O₃, 225°C, 50 bar H₂,24 hours, 10 mL DI H₂O, 10 mmol K₂CO₃).

Figure S15. SEM Image of the 50% Ni/12.5% Yb/Al₂O₃ catalyst after 5 cycles of reactivity (conditions: 10 mL DI H₂O, 225°C, 300 mg 50% Ni/12.5% Yb/Al₂O₃, 50 bar H₂ at room temperature, 24 hours. 4 mmol KOH used in first cycle).

BET Data

Brunauer-Emmett-Teller (BET) surface area measurements of select catalysts were collected using Quantachrome Nova 2200E BET instrument. An example Multi BET plot is shown in [Figure](#page-15-1) S16. Summary of surface areas for catalysts and supports are listed in [Table](#page-15-2) S3. Notably, the 12% Ni/SiO₂ catalyst has a much greater surface area than any of the nickel catalysts.

Figure S16. BET surface area graph for 12% Ni/3% Yb/Al₂O₃.

Table S3. Summary of surface area measurements using BET for select catalysts and supports.

XRF Data

X-Ray Fluorescence was collected for each catalyst in the study to determine if the weight percentages of the elements in the catalysts were correct. Each catalyst's XRF spectrum is shown between 0–60 KeV. The X-Ray source is rhodium, which creates residual rhodium peaks in the spectra. Additional spectra are shown for the Ni/Yb catalysts as the K_α peaks overlap, but the K_β are resolved. The weight percentages of the elements (Ni, Co, Ru, rare earth elements, etc.) were calculated using a Bruker software, Quantexpress, and the results are shown in [Table](#page-28-0) S4.

Figure S17. XRF spectra of 12% Ni/Al_2O_3

Figure S18. XRF of 25% Ni/Al_2O_3 from 0 to 60 KeV.

Figure S19. XRF of 33% Ni/Al_2O_3 from 0 to 60 KeV.

Figure 20. XRF of 50% Ni/Al_2O_3 from 0 to 60 KeV.

Figure S21. XRF of 5% Ru/Al_2O_3 from 0 to 60 KeV.

Fiugre S22. XRF of 5% Rh/Al_2O_3 from 0 to 60 KeV.

Figure S23. XRF of 12% Ni/3% Y/Al₂O₃ from 0 to 60 KeV.

Figure S24. XRF of 12% Ni/3% La/Al₂O₃ from 0 to 60 KeV.

Figure S25. XRF of 12% Ni/3% Ce/Al₂O₃ from 0 to 60 KeV.

Figure S26. XRF of 12% Ni/3% Pr/Al₂O₃ from 0 to 60 KeV.

Figure S27. XRF of 12% Ni/3% Nd/Al_2O_3 from 0 to 60 KeV.

Figure S28. XRF of 12% Ni/3% Sm/Al_2O_3 from 0 to 60 KeV.

Figure S29. XRF of 12% Ni/3% Gd/Al₂O₃ from 0 to 22 KeV.

Fiugre S30. XRF of 12% Ni/3% Dy/Al₂O₃ from 0 to 60 KeV.

Figure S31. 12% Ni/3% Yb/Al₂O₃ from 0 to 60 KeV.

Figure S32. 12% Ni/3% Yb/Al₂O₃ from 0 to 11 KeV.

Figure S33. 33% Ni/8% Yb/Al₂O₃ from 0 to 60 KeV.

Figure S34. 33% Ni/8% Yb/Al₂O₃ from 0 to 11 KeV.

Figure S35. XRF of 50% Ni/12.5% Yb/Al₂O₃ from 0 to 60 KeV.

Figure S36. XRF of 50% Ni/12.5% Yb/Al₂O₃ from 0 to 11 KeV.

Figure S37. XRF of 12% Co/Al_2O_3 from 0 to 60 KeV.

Figure S38. XRF of 12% $Ni/SiO₂$ from 0 to 60 KeV.

Figure S39. XRF of 12% Co/SiO₂ from 0 to 60 KeV.

Figure S40. XRF of 17% CoGa/SiO₂ from 0 to 60 KeV.

Table S4. Weight percentages of metals in all the catalysts utilized.

Catalyst	main metal (%)	Promoter (%)
12% Ni/Al ₂ O ₃	10.23±0.63	N/A
25% Ni/Al ₂ O ₃	25.80±0.35	N/A
33% Ni/Al ₂ O ₃	32.78±0.40	N/A
50% Ni/Al ₂ O ₃	50.29±0.26	N/A
5% $Ru/Al2O3$	6.27 ± 1.62	N/A
5% Rh/Al_2O_3	5.15 ± 1.87	N/A
12% Ni/3% Y/Al ₂ O ₃	9.63 ± 0.66	2.09±0.82
12% Ni/3% La/Al ₂ O ₃	12.20 ± 0.53	$3.89{\pm}4.10$
12% Ni/3% Ce/Al ₂ O ₃	15.10±0.43	5.55 ± 3.23
12% Ni/3% Pr/Al ₂ O ₃	10.00±0.50	5.04±3.24
12% Ni/3% Nd/Al ₂ O ₃	9.53 ± 0.6	$3.92{\pm}4.05$
12% Ni/3% Sm/Al ₂ O ₃	9.65 ± 0.67	3.83 ± 3.45
12% Ni/3% Gd/Al2O3	12.95±0.38	4.17±1.86
12% Ni/3% Dy/Al2O3	10.00±0.57	3.96±2.60
12% Ni/3% Yb/Al ₂ O ₃	10.60±0.55	4.12±4.21
33% Ni/8% Yb/Al ₂ O ₃	34.98±0.86	8.12±4.26
50% Ni/12.5% Yb/ Al2O3	51.19±1.33	10.5 ± 2.49
12% Ni/3% Cu/Al ₂ O ₃	13.10±0.37	3.14±0.67

Carbonate Thermogravimetric Analysis and Solubility Data

TGA data that showcases the temperature of decomposition of various carbonates used in this study is depicted in [Figure](#page-30-1) S41. The data for Cs_2CO_3 was measured by heating the sample from 25°C to 1000°C at a rate of 10°C/min in an air atmosphere. The data for the other carbonates was adapted from the literature. The lowest of these thermal decomposition temperatures is for calcium carbonate, starting at about 600°C. The decomposition temperature of all carbonates was significantly higher than the 200-250 °C used in the hydrogenation reaction presented in this paper. This could indicate that the carbonate salts themselves are being directly converting into methane rather than $CO₂$ desorbing from the carbonate and that resulting $CO₂$ being converted to methane. [Table](#page-30-2) S5 displays the solubility in water of the carbonates used in this study.

Figure S41. Thermogravimetric analysis of the carbonates used in this study. Data for Li₂CO₃ and Na₂CO₃ obtained from $^{[1]}$. Data for K₂CO₃ obtained from $^{[2]}$. Data for CaCO₃ obtained from $^{[3]}$. Decomposition of CsCO₃ measured by TGA on a TA instrument SDT650 using a 10°C·min⁻¹ heating rate.

Table S5. Solubility of carbonates in water.

Catalyst Cost Assessment

The bulk prices for commercially available 5% $Ru/Al₂O₃$ and 5% Rh/Al₂O, and nickel metal precursors were extrapolated from lab-scale pricing. First, lab-scale prices at different pack sizes for the compound of interest were found using reputable vendors and fitted to a power function ([Equation](#page-31-1) S3). A log-log regression of the fitted data was used to extrapolate the bulk cost for a large commercial substance purchase of 1100 kg and compared to Alibaba. The price of the nickel-ytterbium, ruthenium, and rhodium catalysts were estimated using CatCost, a program developed by the Energy Material Network from the U. S. Department of Energy.⁴⁻⁵ The assumptions for all cost analyses using a process template of "Metal on Metal Oxide – Incipient Wetness" are shown in [Table](#page-31-2) S6. The step method was chosen as "Metal (Earth Abundant) on Metal Oxide". The assumptions for the bulk cost of all raw materials are listed in [Table](#page-32-0) S7 These costs were then converted to the price of catalyst per kilogram of methane produced using 300 mg of catalyst and the methane generated from the reaction ([Equation](#page-33-0) [S4\)](#page-33-0). The price of each catalyst in USD dollar per kilogram of methane produced (\$_{cat} · kg_{methane}-1) using the step, CapEx/OpEx, and combined methods from CatCost are listed in [Table](#page-33-1) S8. The net cost of each catalyst was calculated for a three-year catalyst lifetime at a rate of one cycle per day. The ytterbium promoted nickel catalysts were shown to be more cost effective than unpromoted nickel, ruthenium, and rhodium counterparts. These numbers represent the input cost of the catalyst to produce methane.

Equation S3. Power function where unit price *p* is the quote price P divided by quote quantity Q. The scaling parameter *b* and discount factor γ is used to calculate p .

 $p(Q) = b \times Q^{\gamma}$

Table S6. Assumptions for the economics for the catalyst preparation .

Table S7. Assumptions for the raw materials for the catalyst preparation.

^[a]estimated from two vendors since not enough data points were found from a single vendor.

Equation S4. Formula to calculate the cost of the catalyst in dollars of catalyst per kilogram of methane produced.

 $\$_{cat}$ $\frac{c}{k g_{cat}}$ \times – 3×10^{-4} kg_{cat} $\frac{10^{-4} \ kg_{cat}}{kmol_{methane}} \times \frac{1000 \ kmol_{methane}}{16040 \ kg_{methane}}$ $\frac{\$cat}{16040~kg_{methane}} = \frac{\$cat}{kg_{methane}}$ k $g_{\scriptsize{methane}}$

Table S8. Summary of cost and value-added of each catalyst for a three-year lifetime. The number of cycles taken were relative to reaction duration. For example, 24 h is 1095 cycles and 6 h is 4380 cycles.

References

1. J. W. Kim and H. G. Lee, *Metall. Mater. Trans. B* **2001,** *32* (1), 17-24.

2. J. H. Kim, G. Lee, J. E. Park and S. H. Kim, *Processes* **2021,** *9* (6), 1000.

3. X. G. Li, Y. Lv, B. G. Ma, W. Q. Wang, and S. W. Jian, *Arab. J. Chem.* **2017,** *10*, S2534-S2538.

4. K. M. Van Allsburg, E. C. D. Kan, J. D. Super, J. A. Schaidle and F. G. Baddour, F. G. *Nat. Catal.* **2022,** *5* (4), 342-353.

5. ChemCatBio CatCost. https://catcost.chemcatbio.org (accessed 01-13-24).

6. Supelco Nickel(II) nitrate hexahydrate, for analysis EMSURE® ACS.

<https://www.sigmaaldrich.com/US/en/product/mm/106721> (accessed 01-14-24).

7. Sisco Research Laboratories Ytterbium (III) Nitrate Pentahydrate extrapure, 99.9%.

[https://www.srlchem.com/product/details/7584/20435/ytterbium-iii-nitrate-pentahydrate-extrapure-](https://www.srlchem.com/product/details/7584/20435/ytterbium-iii-nitrate-pentahydrate-extrapure-999)[999](https://www.srlchem.com/product/details/7584/20435/ytterbium-iii-nitrate-pentahydrate-extrapure-999) (accessed 01-14-24).

8. MSE PRO Ytterbium Nitrate Pentahydrate (Yb(NO₃)₃ · 5H₂O) 99.95% 3N5.

[https://www.msesupplies.com/products/mse-pro-ytterbium-nitrate-pentahydrate-ybno-sub-3-sub-sub-](https://www.msesupplies.com/products/mse-pro-ytterbium-nitrate-pentahydrate-ybno-sub-3-sub-sub-3-sub-5h-sub-2-sub-o-99-95-3n5?variant=39837257171002)[3-sub-5h-sub-2-sub-o-99-95-3n5?variant=39837257171002](https://www.msesupplies.com/products/mse-pro-ytterbium-nitrate-pentahydrate-ybno-sub-3-sub-sub-3-sub-5h-sub-2-sub-o-99-95-3n5?variant=39837257171002) (accessed 01-14-24).

9. Thermo Scientific Chemicals Ruthenium(III) chloride hydrate, 99.9% (PGM basis). [https://www.fishersci.com/shop/products/ruthenium-iii-chloride-hydrate-99-9-pgm-basis-ru-38-min-](https://www.fishersci.com/shop/products/ruthenium-iii-chloride-hydrate-99-9-pgm-basis-ru-38-min-thermo-scientific/AA1104304#?keyword=Rhodium(III)%20chloride%20hydrate)

[thermo-scientific/AA1104304#?keyword=Rhodium\(III\)%20chloride%20hydrate](https://www.fishersci.com/shop/products/ruthenium-iii-chloride-hydrate-99-9-pgm-basis-ru-38-min-thermo-scientific/AA1104304#?keyword=Rhodium(III)%20chloride%20hydrate) (accessed 01-16-24). 10. Thermo Scientific Chemicals Rhodium(III) chloride hydrate, Rh 38.0-45.5%.

[https://www.fishersci.com/shop/products/rhodium-iii-chloride-hydrate-rh-38-5-45-5-thermo](https://www.fishersci.com/shop/products/rhodium-iii-chloride-hydrate-rh-38-5-45-5-thermo-scientific/AA1103206#?keyword=Rhodium(III)%20chloride%20hydrate)[scientific/AA1103206#?keyword=Rhodium\(III\)%20chloride%20hydrate](https://www.fishersci.com/shop/products/rhodium-iii-chloride-hydrate-rh-38-5-45-5-thermo-scientific/AA1103206#?keyword=Rhodium(III)%20chloride%20hydrate) (accessed 01-16-24).

11. Wuhan Rison Trading Co., L. Nickel nitrate, hexahydrate. [https://www.alibaba.com/product](https://www.alibaba.com/product-detail/Nickel-nitrate-hexahydrate_1218669281.html)[detail/Nickel-nitrate-hexahydrate_1218669281.html](https://www.alibaba.com/product-detail/Nickel-nitrate-hexahydrate_1218669281.html) (accessed 01-14-24).

12. Ganzhou Luckpr Advanced Materials Co., L. Chemical Industry 99-99.99% Ytterbium Nitrate Pentahydrate Powder. [https://www.alibaba.com/product-detail/Chemical-Industry-99-99-99-](https://www.alibaba.com/product-detail/Chemical-Industry-99-99-99-Ytterbium_1600993459743.html?spm=a2700.7724857.0.0.7e804622R6I0z4)

[Ytterbium_1600993459743.html?spm=a2700.7724857.0.0.7e804622R6I0z4](https://www.alibaba.com/product-detail/Chemical-Industry-99-99-99-Ytterbium_1600993459743.html?spm=a2700.7724857.0.0.7e804622R6I0z4) (accessed 01-14-24). 13. Hebei Xinsheng New Material Technology Co., L. RuCl₃ Ruthenium (III) Chloride Hydrate [https://www.alibaba.com/product-detail/RuCl3-Ruthenium-III-Chloride-Hydrate-](https://www.alibaba.com/product-detail/RuCl3-Ruthenium-III-Chloride-Hydrate-CAS_1600698472329.html?spm=a2700.7724857.0.0.4f5753294Eu7PE)

[CAS_1600698472329.html?spm=a2700.7724857.0.0.4f5753294Eu7PE](https://www.alibaba.com/product-detail/RuCl3-Ruthenium-III-Chloride-Hydrate-CAS_1600698472329.html?spm=a2700.7724857.0.0.4f5753294Eu7PE) (accessed 01-14-24).

14. Shanghai Nicest Chemical Technology Co., L. Rhodium Chloride Hydrate Powder. [https://www.alibaba.com/product-detail/Factory-Supply-Rhodium-Chloride-Hydrate-](https://www.alibaba.com/product-detail/Factory-Supply-Rhodium-Chloride-Hydrate-Powder_1600384940627.html?spm=a2700.7724857.0.0.492062e9y9UCos)[Powder_1600384940627.html?spm=a2700.7724857.0.0.492062e9y9UCos](https://www.alibaba.com/product-detail/Factory-Supply-Rhodium-Chloride-Hydrate-Powder_1600384940627.html?spm=a2700.7724857.0.0.492062e9y9UCos) (accessed 01-14-24).