Supporting Information

Promoting Uniform Zinc Coatings through the Use of Quaternary Ammonium Salts based on

Phthalimide as Electroplating Additives

Kexin Du a, Xuyang Li a, Wenhao Zhou a, Peikun Zou a, Nayun Zhou a, Xin Chen a and Limin

Wang *a

^a Shanghai Key Laboratory for Functional Materials Chemistry and Institute of Fine Chemicals,

School of Chemistry and Molecular Engineering, East China University of Science and Technology,

130 Meilong Road, Shanghai 200237, P. R. China.

*E-mail: <u>wanglimin@ecust.edu.cn;</u>

1. ¹H NMR, ¹³C NMR and mass spectral information of the compound

Compound PI1: yield: 58% ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.12-9.04 (m, 2H), 8.61 (tt, *J* = 7.8, 1.4 Hz, 1H), 8.20-8.12 (m, 2H), 7.90 – 7.81 (m, 4H), 4.63 (t, *J* = 7.5 Hz, 2H), 3.62 (t, *J* = 6.8 Hz, 2H), 2.05 – 1.88 (m, 2H), 1.70 – 1.53 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 151.46, 145.82, 134.90, 125.90, 123.51, 122.38, 37.27.

Fig. S1 ¹H NMR (DMSO- d_6) of the compound PI1

Fig. S2 ¹³C NMR (DMSO- d_6) of the compound PI1

Compound PI2: yield: 62% ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.37 – 9.04 (m, 2H), 8.98 – 8.78 (m, 2H), 8.74 – 8.52 (m, 2H), 8.20 – 7.95 (m, 2H), 7.92 – 7.68 (m, 4H), 4.67 (t, *J* = 7.4 Hz, 2H), 3.64 (t, *J* = 6.8 Hz, 2H), 2.16 – 1.86 (m, 2H), 1.67 (p, *J* = 6.9 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.47, 152.79, 151.44, 145.80, 141.32, 134.88, 125.88, 123.49, 122.36, 60.41, 37.25, 28.69, 25.19.

Fig. S3 ¹H NMR (DMSO- d_6) of the compound PI2

Fig. S4 13 C NMR (DMSO- d_6) of the compound PI2

Compound PI3: yield: 57% ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.55 (dd, *J* = 5.8, 1.5 Hz, 1H), 9.29 (d, *J* = 8.3 Hz, 1H), 8.66 (d, *J* = 9.0 Hz, 1H), 8.49 (dd, *J* = 8.3, 1.5 Hz, 1H), 8.29 – 8.16 (m, 2H), 8.08 – 8.03 (m, 1H), 7.84 (qd, *J* = 4.5, 2.4 Hz, 4H), 5.08 (t, *J* = 7.6 Hz, 2H), 3.64 (t, *J* = 6.8 Hz, 2H), 2.06 – 1.97 (m, 2H), 1.76 (p, *J* = 6.9 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.47, 150.23, 147.94, 136.11, 134.88, 132.09, 131.21, 130.35, 123.49, 122.64, 119.44, 57.38, 37.31, 27.43, 25.46.

Fig. S5 ¹H NMR (DMSO- d_6) of the compound PI3

Fig. S6 13 C NMR (DMSO- d_6) of the compound PI3

Compound PI4: yield: 55% ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.48-9.15 (m, 4H), 8.92-8.69 (m, 4H), 7.97-7.78 (m, 4H), 4.72 (t, *J* = 7.4 Hz, 2H), 4.46 (s, 3H), 3.65 (t, *J* = 6.8 Hz, 2H), 2.04 (td, *J* = 14.3, 6.7 Hz, 2H), 1.82-1.56 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.50, 147.12, 146.28, 134.94, 132.14, 127.06, 126.57, 123.53, 60.95, 48.57, 37.26, 28.80, 25.24.

Fig. S7 ¹H NMR (DMSO- d_6) of the compound PI4

Fig. S8 13 C NMR (DMSO- d_6) of the compound PI4

Compound PI5: yield: 52% ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.49-9.14 (m, 4H), 9.03-8.62 (m, 4H), 8.09-7.67 (m, 4H), 4.72 (t, *J* = 7.4 Hz, 2H), 4.46 (s, 3H), 3.65 (t, *J* = 6.8 Hz, 2H), 2.04 (td, *J* = 14.3, 6.7 Hz, 2H), 1.82-1.56 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.50, 147.12, 146.28, 134.94, 132.14, 127.06, 126.57, 123.53, 60.95, 48.57, 37.26, 28.80, 25.24.

Fig. S9 ¹H NMR (DMSO- d_6) of the compound PI5

Fig. S10 13 C NMR (DMSO- d_6) of the compound PI5

