Electronic Supplementary Information (ESI)

From citrus waste to value: Optimizing sulfonated carbons for limonene upcycling into value-added products

Gabrielle M. Reis¹, Renan S. Nunes¹, Gabriela T. M. Xavier¹, Marina V. Kirillova², Alexander M. Kirillov², Dalmo Mandeli¹, Wagner A. Carvalho^{1,*}

¹ Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, Brazil ² MINDlab: Molecular Design & Innovation Laboratory, Centro de Química Estrutural, Institute of Molecular Sciences, Departmento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.

The ESI includes additional tables and figures detailing the preparation and characterization of the carbon catalyst, as well as catalytic activity studies (Tables S1-S3, Figures S1-S6), and data from control experiments (Figures S7 and S8).

Response analyzed									
	у1		үЗ			у4			
Source	Coded Equation	Sum of squares	p-value	Coded Equation	Sum of squares	p-value	Coded Equation	Sum of squares	p-value
Regression	5.13	3.38	0.0069	98.59	11887.6	<0.0001	21,56	799,74	0,0068
x1	0.415	1.38	0.0059	-17.39	2418.16	0.0002	-3.45	94.95	0.0651
x2	0.308	0.7607	0.0213	24.69	4878.63	<0.0001	5.44	237.02	0.0119
x1 x2	0.37	0.5476	0.0393	5.37	115.49	0.0761	-7.27		
x1²				23.71	3174.7	<0.0001	-7.37	298.69	0.0071
x2²	0.334	0.6889	0.0258	-21.48	2605.13	0.0001		306.64	0.0067
Residual		0.4768			116.07			112.13	
Lack of fit		0.1579	0.8903		114.86	0.0156		46.9	0.825
Pure error		0.3189			1.21			65.22	
R²		0.8763			0.9903			0.8770	
R²ajd		0.7526			0.9807			0.7951	
R ² pred		0.6619			0.9317			0.6855	
Response analyzed									
				Response ana	alyzed				
		у5		Response and	alyzed y6			γ7	
Source	Coded Equation	γ5 Sum of squares	p-value	Response and Coded Equation	alyzed y6 Sum of squares	p-value	Coded Equation	y7 Sum of squares	p-value
Source Regression	Coded Equation 6,29	y5 Sum of squares 56.67	p-value 0.0122	Response and Coded Equation 8.07	alyzed y6 Sum of squares 137.9	p-value 0.0565	Coded Equation 14.6	y7 Sum of squares 136.62	p-value 0.0137
Source Regression x1	Coded Equation 6,29 -0,4565	y5 Sum of squares 56.67 1.67	p-value 0.0122 0.3578	Response and Coded Equation 8.07 -1.92	Nyzed y6 Sum of squares 137.9 29.48	p-value 0.0565 0.0743	Coded Equation 14.6 -3.57	y7 Sum of squares 136.62 101.77	p-value 0.0137 0.0501
Source Regression x1 x2	Coded Equation 6,29 -0,4565 0,6562	y5 Sum of squares 56.67 1.67 3.44	p-value 0.0122 0.3578 0.2023	Response and Coded Equation 8.07 -1.92 2.54	alyzed y6 Sum of squares 137.9 29.48 51.79	p-value 0.0565 0.0743 0.0307	Coded Equation 14.6 -3.57 4.78	y7 Sum of squares 136.62 101.77 182.89	p-value 0.0137 0.0501 0.0157
Source Regression x1 x2 x1 x2	Coded Equation 6,29 -0,4565 0,6562	y5 Sum of squares 56.67 1.67 3.44	p-value 0.0122 0.3578 0.2023	Response and Coded Equation 8.07 -1.92 2.54 -1.56	alyzed y6 Sum of squares 137.9 29.48 51.79 9.68	p-value 0.0565 0.0743 0.0307 0.2538	Coded Equation 14.6 -3.57 4.78	y7 Sum of squares 136.62 101.77 182.89	p-value 0.0137 0.0501 0.0157
Source Regression x1 x2 x1 x2 x1 x2 x1 ²	Coded Equation 6,29 -0,4565 0,6562 -2,27	y5 Sum of squares 56.67 1.67 3.44 29.12	p-value 0.0122 0.3578 0.2023 0.0059	Response and Coded Equation 8.07 -1.92 2.54 -1.56 -1.8	alyzed y6 Sum of squares 137.9 29.48 51.79 9.68 18.36	p-value 0.0565 0.0743 0.0307 0.2538 0.136	Coded Equation 14.6 -3.57 4.78	y7 Sum of squares 136.62 101.77 182.89	p-value 0.0137 0.0501 0.0157
Source Regression x1 x2 x1 x2 x1 x2 x1 ² x2 ²	Coded Equation 6,29 -0,4565 0,6562 -2,27 -2,57	y5 Sum of squares 56.67 1.67 3.44 29.12 37.39	p-value 0.0122 0.3578 0.2023 0.0059 0.0033	Response and Coded Equation 8.07 -1.92 2.54 -1.56 -1.8 -2.68	Alyzed y6 Sum of squares 137.9 29.48 51.79 9.68 18.36 40.59	p-value 0.0565 0.0743 0.0307 0.2538 0.136 0.046	Coded Equation 14.6 -3.57 4.78 .4.5	γ7 Sum of squares 136.62 101.77 182.89 125.21	p-value 0.0137 0.0501 0.0157 0.0343
Source Regression x1 x2 x1 x2 x1 x2 x1 ² x2 ² Residual	Coded Equation 6,29 -0,4565 0,6562 -2,27 -2,57	y5 Sum of squares 56.67 1.67 3.44 29.12 37.39 4.03	p-value 0.0122 0.3578 0.2023 0.0059 0.0033	Response and Coded Equation 8.07 -1.92 2.54 -1.56 -1.8 -2.68	Alyzed y6 Sum of squares 137.9 29.48 51.79 9.68 18.36 40.59 29.12	p-value 0.0565 0.0743 0.0307 0.2538 0.136 0.046	Coded Equation 14.6 -3.57 4.78 .4.5	y7 Sum of squares 136.62 101.77 182.89 125.21 127.53	p-value 0.0137 0.0501 0.0157 0.0343
Source Regression x1 x2 x1 x2 x1 x2 x1 ² x2 ² Residual Lack of fit	Coded Equation 6,29 -0,4565 0,6562 -2,27 -2,57	y5 Sum of squares 56.67 1.67 3.44 29.12 37.39 4.03 6.06	p-value 0.0122 0.3578 0.2023 0.0059 0.0033 0.8404	Response and Coded Equation 8.07 -1.92 2.54 -1.56 -1.8 -2.68	Alyzed y6 Sum of squares 137.9 29.48 51.79 9.68 18.36 40.59 29.12 9.99	p-value 0.0565 0.0743 0.0307 0.2538 0.136 0.046 0.046	Coded Equation 14.6 -3.57 4.78 .4.5	y7 Sum of squares 136.62 101.77 182.89 125.21 127.53 100.51	p-value 0.0137 0.0501 0.0157 0.0343 0.4486
Source Regression x1 x2 x1 x2 x1 x2 x1 ² x2 ² Residual Lack of fit Pure error	Coded Equation 6,29 -0,4565 0,6562 -2,27 -2,57	y5 Sum of squares 56.67 1.67 3.44 29.12 37.39 4.03 6.06 66.76	p-value 0.0122 0.3578 0.2023 0.0059 0.0033 0.8404	Response and Coded Equation 8.07 -1.92 2.54 -1.56 -1.8 -2.68	Alyzed y6 Sum of squares 137.9 29.48 51.79 9.68 18.36 40.59 29.12 9.99 19.13	p-value 0.0565 0.0743 0.0307 0.2538 0.136 0.046 0.7991	Coded Equation 14.6 -3.57 4.78 .4.5	y7 Sum of squares 136.62 101.77 182.89 125.21 127.53 100.51 27.03	p-value 0.0137 0.0501 0.0157 0.0343 0.4486
Source Regression x1 x2 x1 x2 x1 ² x2 ² Residual Lack of fit Pure error R ²	Coded Equation 6,29 -0,4565 0,6562 -2,27 -2,57	y5 Sum of squares 56.67 1.67 3.44 29.12 37.39 4.03 6.06 66.76 0.8489	p-value 0.0122 0.3578 0.2023 0.0059 0.0033 0.8404	Response and Equation 8.07 -1.92 2.54 -1.56 -1.8 -2.68	Alyzed y6 Sum of squares 137.9 29.48 51.79 9.68 18.36 40.59 29.12 9.99 19.13 0.8256	p-value 0.0565 0.0743 0.0307 0.2538 0.136 0.046 0.7991	Coded Equation 14.6 -3.57 4.78 .4.5	y7 Sum of squares 136.62 101.77 182.89 125.21 127.53 100.51 27.03 0.7627	p-value 0.0137 0.0501 0.0157 0.0343 0.4486
Source Regression x1 x2 x1 x2 x1 ² x2 ² Residual Lack of fit Pure error R ² R ² ajd	Coded Equation 6,29 -0,4565 0,6562 -2,27 -2,57	y5 Sum of squares 56.67 1.67 3.44 29.12 37.39 4.03 6.06 66.76 0.8489 0.7482	p-value 0.0122 0.3578 0.2023 0.0059 0.0033 0.8404	Response and Coded Equation 8.07 -1.92 2.54 -1.56 -1.8 -2.68	Alyzed y6 Sum of squares 137.9 29.48 51.79 9.68 18.36 40.59 29.12 9.99 19.13 0.8256 0.6513	p-value 0.0565 0.0743 0.0307 0.2538 0.136 0.046 0.7991	Coded Equation 14.6 -3.57 4.78 .4.5	y7 Sum of squares 136.62 101.77 182.89 125.21 127.53 100.51 27.03 0.7627 0.661	p-value 0.0137 0.0501 0.0157 0.0343 0.4486

Table S1: ANOVA for Central composite experimental design.

(x 1) mass of sulfuric acid for 1 g of glucose (g); (x 2) temperature (°C); (y 1) total acid groups (mmol g^{-1}), (y 2) sulfonic and carboxylic groups (mmol g^{-1}), (y 3) conversion of limonene (%), (y 4) α -terpinene yield (%); (y 5) p-cymene yield (%); (y 6) γ -terpinene yield (%); (y 7) terpinolene yield (%)

Figure S1: Amount of total groups and carboxylic + sulfonic groups present in the carbons of each trial of the experimental design.

Figure S2: Catalytic outcomes of limonene isomerization. Figure illustrates the performance of each catalyst prepared through the Central Composite Experimental Design (referred to as Runs). The synthesis conditions for each catalyst are detailed in Table 1. The reactions were carried out in a two-neck round-bottom flask heated in an oil bath and fitted with a reflux condenser. The experimental setup involved the utilization of 30 mmol of limonene, a catalyst loading of 15% by weight, and a reaction temperature of 150 °C.

Figure S3: FTIR results of the CCRD experiments, according to Table 1.

Figure S4: SEM micrographs of the sulfonated carbons in the experimental design (runs are those of Table 1).

Run	(x 1) m sulfuric acid for 1 g of glucose (g)	(x 2) temperature (°C)	Sea (%)	Seds (%)
1	0.9	97.6	0.4 ± 0.01	0.4 ± 0.1
2	2.6	97.6	1.6 ± 0.1	2.6± 0.5
3	0.9	182.4	3.2 ± 0.2	3.8 ± 0.7
4	2.6	182.4	3.1 ± 0.1	3.4 ± 0.1
5	0.5	140.0	0.3 ± 0.03	0.5 ± 0.1
6	3.0	140.0	1.5 ± 0.1	2.5 ± 0.8
7	1.7	80.0	1.0 ± 0.04	1.7 ± 0.5
8	1.7	200.0	12.07± 1.00	10.3± 1.7
9	1.7	140.0	0.9 ± 0.4	1.6 ± 0.3
10	1.7	140.0	1.2 ± 0.1	1.7 ± 0.4
11	1.7	140.0	1.3 ± 0.2	2.3 ± 0.3

Table S2: Elementary amount of sulfur in the elemental analysis and Energy dispersive X-ray (EDX) analysis present in the catalysts obtained through CCRD.

 $S_{EA} \, (\%) = \text{Elementary amount of sulfur according to the elemental analysis.} \\ S_{EDS} \, (\%) = \text{Elementary amount of sulfur according to the Energy dispersive X-ray (EDX) analysis.}$

	(x 1)				
Run	m sulfuric acid for 1 g of glucose	(x 2) temperature	BET Surface area	Total Pore volume	Micropore Volume
	(g)	(°C)	(m² g-1)	(cm ³ g ⁻¹)	(cm ³ g ⁻¹)
1	0.9	97.6	15.1	0.04	0.006
2	2.6	97.6	1.3	0.001	-
3	0.9	182.4	109.9	0.1	0.05
4	2.6	182.4	32.9	0.03	0.02
5	0.5	140.0	47.4	0.1	0.02
6	3.0	140.0	2.7	0.003	0.001
7	1.7	80.0	2.4	0.004	0.001
8	1.7	200.0	133.2	0.1	0.06
9	1.7	140.0	74.1	0.06	0.03
10	1.7	140.0	51.4	0.06	0.02
11	1.7	140.0	86.9	0.07	0.04

Table S3: Texture characteristics of sulfonated carbons obtained through CCRD. Runs are those of Table 1.

Figure S5. Heat map of Pearson correlation coefficient matrix. (y1) total acid groups (mmol g⁻¹), (y2) sulfonic and carboxylic groups (mmol g⁻¹), (y3) conversion of limonene (%); (y4) α -terpinene yield (%); (y5) p-cymene yield; (y6) γ -terpinene yield; (y7) terpinolene yield (%); (y8) BET Surface area (m²g⁻¹); (y9) Total Pore volume (cm³g⁻¹);(y10) Micropore Volume(cm³g⁻¹).

Figure S6. Results from the established optimization criteria. the overall desirability function emerges.

Control Experiments

Control experiments were conducted to assess the activity of free sulfuric acid as a catalyst (Figure S7). In the first experiment, 0.8 mmol of H_2SO_4 was added, resulting in 100% limonene conversion, but with reduced selectivity toward α -terpinene (yield 0.6%) and γ -terpinene (yield 0.2%). In the second experiment, using 0.1 mmol of H_2SO_4 , limonene conversion was limited to 52.9% after 240 min. The yields of isomerization products were also significantly lower than those achieved with the sulfonated catalyst. As shown in Figure S8, the reaction medium transitioned from colorless to brown in both cases, indicating the formation of undesirable polymers.

Figure S7. Catalytic results of limonene isomerization using 0.1 and 0.8 mmol of H₂SO₄. The experiment was performed with 30 mmol of limonene at 150 °C.

Figure S8. Color changes observed in the reaction with H_2SO_4 after 4 h of reaction: a) Pure limonene before the reaction. b) Reaction with 0.8 mmol of H_2SO_4 . c) Reaction with 0.1 mmol of H_2SO_4 .