SUPLEMENTARY INFORMATION

Elucidating the role of the nanostructure in protein aerogels for removal of organic water pollutants

Rodrigo Sanches Pires¹, Antonio J. Capezza², David Jonsson¹, Jessica Lyrner Morén¹, Mikael S. Hedenqvist², Christofer Lendel^{1*}

¹ Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44, Stockholm, Sweden.

² Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.

Figure S1. AFM micrographs illustrating the morphologies of the fibrils forming the PNF-S (A) and PNF-C (B) hydrogels.

Figure S2. Photos of the four materials investigated in this study *PNF-S:* PNF aerogels from straight seeds. *PNF-C:* PNF aerogels from curved seeds. *NF-5:* Non-fibrillar particulate gels formed at the isoelectric point. *NF-7:* Non-fibrillar aerogels formed under reducing conditions at neutral pH. The top row shows the dry aerogels and the bottom row the same materials submerged in water for 70 days.

Figure S3. SEM images of the cell walls of the four classes of aerogels. **A.** PNF-S aerogel from straight seeds. **B.** PNF-C aerogel from curved seeds. **C.** NF-5 aerogel formed at the isoelectric point. **D.** NF-7 aerogel formed at neutral pH under reducing conditions.