Supplementary Information

Enzymatic Polymerization of Furan-Based Polymers in Biobased Solvents

Fitrilia Silvianti¹, Dina Maniar¹, Tijn C. de Leeuw², Jur van Dijken¹, Katja Loos^{1,*}

- 1 Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- 2 CarbExplore Research B.V., 9747 AA Groningen, The Netherlands
- * Correspondence: <u>k.u.loos@rug.nl</u>

Figure S1. The Sum of peak height intensities of furan-based polyesters species from MALDI-ToF MS analysis and details of each species A to H are provided in Table 2.

Figure S2. The Sum of peak height intensities of P(2,5-FMF-*co*-2,5-DF) species from MALDI-ToF MS analysis and details of each species A to K are provided in Table 3.

Figure S3. The molar fractions percentage of 2,5-BHMF comparison between P(2,5-FMF*co*-2,5-DF) obtained in various method determined by ¹H-NMR spectroscopy

Figure S4. TGA curves of the obtained furan-based polyesters

Figure S5. TGA curves of the obtained P(2,5-FMF-*co*-2,5-DF)

Figure S6. WAXD spectra of the obtained furan-based polyesters

Figure S7. WAXD spectra of the obtained P(2,5-FMF-co-2,5-DF)

Figure S8. SEC elugrams of the obtained furan-based polyesters

Figure S9. SEC elugrams of the obtained P(2,5-FMF-co-2,5-DF)

x ^a	Dolumor	Solvent	\bar{M}_{n^a}	${ar M}_{w^a}$	Yield ^b
	Folymer	Solvent	[g mol ⁻¹]	[g mol ⁻¹]	[%]
		<i>p</i> -cymene	3350	5000	35
	2,5-POF	Pinacolone	2400	4100	17
8		Toluene	4450	8200	53
		BMIMPF ₆	1550	2000	30
		U-ChCl	1800	2500	35
		<i>p</i> -cymene	4100	7000	63
12	2,5-PDOF	Pinacolone	3700	6200	48
		Toluene	5700	13300	60
		BMIMPF ₆	2700	5400	56
		U-ChCl	1900	2700	41

Table S1. Molecular weights and yields of the obtained furan-based polyesters in comparison with previous results.^[14,39]

^a The number-average molecular weight (\overline{M}_n) and weight-average molecular weight (\overline{M}_{w}) were determined by SEC using CHCl₃ as the eluent; ^b isolated yield.

Method	Solvent	${ar M}_{n^a}$ [g mol ⁻¹]	$ar{M}_{w^a}$ [g mol ⁻¹]	Yield ^b [%]
	<i>p</i> -cymene	3000	4400	42
One-step	d-limonene	2400	3500	49
_	Toluene	4300	7100	48
Two star	<i>p</i> -cymene	3500	5900	47
1 wo-step	d-limonene	2300	3400	49
(000 mmng)	Toluene	5800	11400	54
Two-step	<i>p</i> -cymene	5600	12800	61
(60 mmHg)	d-limonene	3000	4500	60

Table S2. Molecular weights and yields of the obtained P(2,5-FMF-co-2,5-DF)

^a The number-average molecular weight (\overline{M}_n) and weight-average molecular weight (\overline{M}_w) were determined by SEC using CHCl₃ as the eluent; ^b isolated yield.

162.17

4.57

Clark et al.44

Table 55. 1 Toperties of selected solvents									
Salvant	Kamlet-7	Faft ^a	$V_m{}^{\mathbf{b}}$	Log D	Defenences				
Solvent	β	π^*	(mL/mol)	LOG P	Kelefences				
Toluene	0.12	0.50	107.10	2.58	Clark et al. ⁴⁴				
<i>p</i> -cymene	0.13	0.39	156.06	3.47	Clark et al. ⁴⁴				
Pinacolone	0.58	0.59	125.20	1.21	Byrne et al. 33				

0.16

Table S3 Properties of selected solvents

0.00

d-limonene

^a measured via UV spectroscopy taking the wavelength of maximum absorption, λ_{max} , in the relevant solvent, i.e., hydrogen bond accepting ability (β) using 4-nitroanisole, polarizability (π^*) using N,N-diethyl-4-aniline;

^b molar volume calculated as the ratio between molecular weight (M_w) and density (ρ) of the solvent

				TGA	WAXD		
Polyester	Solvent	T_g^a (°C)	T_m^b (°C)	T_m^b (°C)	T_c^c (°C)	T_{d-max}^{d} (°C)	χc ^e
2,5-POF	<i>p</i> -cymene	10	138; 141	129; 138	118	394	56
	Pinacolone	5	121; 127	116; 126	104	390	51
2,5-PDOF	<i>p</i> -cymene	5	57; 102	94; 102	79	396	46
	Pinacolone	6	55; 100	91; 100	76	396	46

Table S4. Thermal and crystalline properties of the obtained furan-based polyesters

 ${}^{a}T_{g}$ = glass transition temperature from the modulated DSC heating scan, ${}^{b}T_{m}$ = melting temperature from the second heating scan, ${}^{c}T_{c}$ = crystallization temperature from the cooling scan; ${}^{d}T_{d-max}$ = temperature at the maximum rate of decomposition; e The degree of crystallinity (χ_{c}) was calculated from WAXD

Table S5. Thermal and crystalline properties of the obtained P(2,5-FMF-co-2,5-DF

		DSC					TGA	WAXD
Method	Solvent	<i>T_g^a</i> (°C)	T_m^b (°C)	<i>T_m^c</i> (°C)	<i>T_{cc}</i> ^{<i>c</i>} (°C)	$T_c^{\ d}$ (°C)	T _{d-max} ^e (°C)	$\chi_c f$
One-step	<i>p</i> -cymene	-5	64; 99	80; 87; 98	_ <i>g</i>	63; 73	238; 390	37
	(+)-limonene	-5	59; 73; 91	72; 81; 92	_ <i>g</i>	50; 65	227; 390	35
	Toluene	-2	60; 101	84; 90; 101	_ <i>g</i>	64; 70	239; 393	35
Two-step 600 mmHg	<i>p</i> -cymene	-1	60; 91; 101	87; 100	_ <i>g</i>	69	238; 393	37
	(+)-limonene	-2	58; 73; 88	71; 89	25	46	232; 393	32
	Toluene	-3	55; 100	99	37	53	239; 393	35
Two-step 60 mmHg	<i>p</i> -cymene	-1	57; 99	87; 100	35	58	227; 391	37
	(+)-limonene	-3	69; 82	84	_ <i>g</i>	9	237; 393	30

^{*a*} T_g = glass transition temperature from the modulated DSC heating scan, ^{*b*} T_m = melting temperature from the first heating scan, ^{*c*} T_m = melting temperature and T_{cc} = cold crystallization temperature from the second heating scan, ^{*d*} T_c = crystallization temperature from the cooling scan; ^{*e*} T_{d-max} = temperature at the maximum rate of decomposition; ^{*f*} The degree of crystallinity (χ_c) was calculated from WAXD; ^{*g*} not determined