Supporting information

Controlling the Nanoparticles Size and Shape of Pt/TiO₂ catalyst for Enhanced Hydrogenation of Furfural to Furfuryl Alcohol

Heba Alsharif^{a,b}, Matthew Conway^a, David J Morgan^a, Thomas E. Davies^a, Stuart H Taylor^a, Meenakshisundaram Sankar ^{a*}

^a Cardiff Catalysis Institute, Translational Research Hub, School of Chemistry, Cardiff University, Cardiff, CF24 4HQ, UK.

^b Chemistry Department, Faculty of Science, Taibah University, 41477, Al-Madinah Al-Munawarah, Saudi Arabia

Corresponding author: Dr. M. Sankar, Email: <u>sankar@cardiff.ac.uk</u>

Scheme S1 Schematic representation of the formation of hemiacetal and subsequent acetalylation product from the reaction between furfural and isopropanol (solvent). Acetylation of furfuryl alcohol using isopropanol (last reaction).

Table S1: Liquid phase hydrogenation of FF to 2-FFA over 4.2% Pt/TiO₂ catalyst – Effect of heat treatment

Catalyst	Heat treatment	Conv. (%)	Products Selectivity (%)		
			2-FFA	2-MF	Solvent
					Product
	Calcination	90	42	31	27
4.2%Pt/TiO ₂	Reduction	25	90	-	10
	Calcination + Reduction ^[a]	99	59	9	1

Reaction conditions: H_2 : 3 bar; Temp: 30 °C; FF: 4.45 mmol; Isopropanol (solvent) : 15 mL; Time : 6h; FF/Pt molar ratio : 207. [a] Rest of the products is a mixture of 4 unknown products.

Figure S1: Catalytic performance of 4.2%Pt/TiO₂ as a function of time for the hydrogenation of FF to 2-FFA. Effect of catalyst reduction vs calcination + reduction. Reaction conditions: H_2 : 3 bar; Temp : 30 °C; FF: 4.45 mmol; Isopropanol (solvent) : 15 mL; FF/Pt molar ratio : 207.

Figure S2: Catalytic performance of 2.4%Pt/TiO₂ (calcination + reduction) as a function of time for the hydrogenation of FF to 2-FFA. Reaction conditions: H_2 : 3 bar; Temp : 30 °C; FF: 4.45 mmol; Isopropanol (solvent) : 15 mL; FF/Pt molar ratio : 207.

Figure S3: Catalytic performance of 1.4%Pt/TiO₂ (calcination + reduction) as a function of time for the hydrogenation of FF to 2-FFA. Reaction conditions: H_2 : 3 bar; Temp : 30 °C; FF: 4.45 mmol; Isopropanol (solvent) : 15 mL; FF/Pt molar ratio : 207.

Figure S4: Catalytic performance of 0.6%Pt/TiO₂ (calcination + reduction) as a function of time for the hydrogenation of FF to 2-FFA. Reaction conditions: H_2 : 3 bar; Temp : 30 °C; FF: 4.45 mmol; Isopropanol (solvent) : 15 mL; FF/Pt molar ratio : 207.

Figure S5: Ti(2p) and O(1s) core-levels spectra for 0.6%Pt/ TiO_2 series of catalysts (a) and the 4.2%Pt/ TiO_2 series of catalysts (b)

Table S2: XP	PS data for the tw	vo Pt/TiO ₂ cataly	sts after different	heat treatments.
--------------	--------------------	-------------------------------	---------------------	------------------

Catalyst	Heat Treatment	B.E. / eV	Pt species	Pt Concentration (%)	Total Pt concentration
4.2%Pt/TiO ₂	Dried	72.7	Pt ²⁺ (OH)	0.92	1.74
		74.7	PtClx	0.82	-
	Calcined	72.7	Pt^{2+}	1.28	1.96
		74.8	$PtCl_x$	0.68	
	Reduced	70.5	Pt^{0}	0.14	0.14
	Calcined+reduced	70.9	Pt^0	1.24	1.24
$0.6\% Pt/TiO_2$	Dried only	72.5	Pt^{2+}	0.28	0.28
	Reduced only	70.7	Pt^0	0.15	0.15
	Calcined +reduced	70.6	Pt^0	0.24	0.24

Figure S6: Scanning Transmission Electron microscopic images of 4.2%Pt/TiO₂ (C+R) (a & b); 4.2%Pt/TiO₂ (R) (c & d); 0.6%Pt/TiO₂ (C+R) (e & f); 0.6%Pt/TiO₂ (R) (g & h). The lower magnification images highlight the presence of large irregular Pt particles on the reduced only catalysts.

Figure S7 XPS results of the fresh and spent samples of 0.6% Pt/TiO₂ calc +red

Table S3: Quantitative analyses of the metal composition using Inductively Coupled Plasmacoupled with Mass Spectra (ICP-MS)

Sample	Pt (mg/g)
0.6%Pt/TiO ₂ - Fresh sample	8.77
0.6%Pt/TiO ₂ - Spent sample after 3 runs	8.92

Figure S8: TEM images of fresh (a) and spent (b) samples of 0.6 wt. % Pt/TiO_2 catalyst.

Catalyst	Preparation method	Catalyst & FF	Temp./Press./Solvent/Time	Conv.	Selec.	Ref
3% Pt/HT	Wetness impregnation	FF (0.75 mmols),	30 °C, /15 bar/ water/ 2 h	99	99	1
3% Pt/SiC–C	Ultrasound promoted impregnation	FF (0.3 ml), catalyst (20 mg),	25 °C/ 10 bar/ water/ 5h	99	99	2
2.3% Pt/MgO,	Colloidal deposition	FF (0.02 mmols), catalyst (20 mg)	50 °C/1.03 bar /methanol/ 7 h	80	99	3
1.4% Pt/CeO ₂	Colloidal deposition	FF (0.02 mmols), catalyst (20 mg)	50 °C/ 1.03 bar /methanol/ 7 h	79	97	3
1.9% Pt/γ-Al ₂ O ₃	Colloidal deposition	FF (0.02 mmols), catalyst (20 mg)	50 °C/ 1.03 bar /methanol/ 7 h	77	98	3
5% Pt/TiO ₂ nanorod (NR)	Impregnation-chemical reduction	FF (26 mmol), catalyst (100 mg)	170 °C/20 bar/ water/ 2 h.	90	2	4
0.7% Pt/TiO ₂	One-step flame spray pyrolysis (FSP)	FF (0.05 ml), catalyst (50 mg)	50 °C/ 20 bar/ methanol/ 2 h.	83	95	5
0.5% Pt/TiO ₂	Strong electrostatic adsorption method (SEA)	FF (0.6 mmol), catalyst (50 mg)	50 °C/20 bar/ methanol/2 h.	89	80	6
1% Pt/SnNb2O6	Photoreduction method	FF (0.1 mmol), catalyst (8 mg)	25 °C/1 bar/methanol/2 h.	99.9	99.9	7
1% Pt/Al2O3	Incipient wetness impregnation	FF (0.3 mmol),	150 °C/ 5 bar/ isopropanol/ 5 h.	95	98	8

Table S4: Comparison of different supported Pt nanoparticulate catalysts for the hydrogenation of FF to 2-FF including the current work.

		catalyst (58 mg)				
Pt/CeO ₂ /UIO	Deposition method	FF (0.2 mmol),	80 °C/ 10 bar/ isopropanol/ 30 h.	100	99	9
		catalyst (Pt: 0.5 mol				
		%)				
0.6% Pt/TiO ₂	Wetness impregnation	FF (0.3 ml), catalyst	30 °C/ 3 bar /isopropanol/ 6 h	97	95	Current
		(100 mg),				work

Supplementary References

- 1. G. Gao, J. Remón, Z. Jiang, L. Yao and C. Hu, *Appl. Catal. B: Environ.*, 2022, **309**, 121260.
- G. Wang, R. Yao, H. Xin, Y. Guan, P. Wu and X. Li, *RSC Advances*, 2018, 8, 37243-37253.
- M. J. Taylor, L. J. Durndell, M. A. Isaacs, C. M. A. Parlett, K. Wilson, A. F. Lee and G. Kyriakou, *Appl. Catal. B: Environ.*, 2016, 180, 580-585.
- 4. M. Y. Byun, Y. E. Kim, J. H. Baek, J. J. and M. S. Lee, *RSC Adv.*, 2022, 12, 860-868.
- 5. W. Tolek, K. Khruechao, B. Pongthawornsakun, O. Mekasuwandumrong, F. J. C. S. Aires, P. Weerachawanasak and J. Panpranot. *Cat. Commun.*, 2021, 149, 106246.
- S. Kuhaudomlap, O. Mekasuwandumrong, P. Praserthdam, S.-I. Fujita, M. Arai and J. Panpranot, *Catalysts* 2018, 8, 87.
- Y. Shi, H. Wang, Z. Wang, C. Liu, M. Shen, T. Wu and L. Wu, *J. Energy Chem.*, 2022, 66, 566-575.
- M. Agote-Arán, S. Alijani, C. Coffano, A. Villa and D. Ferri, *Catal. Lett.*, 2021, 152, 980-990.
- Y. Long, S. Song, J. Li, L. Wu, Q. Wang, Y. Liu, R. Jin and H. Zhang, ACS Catal., 2018, 8, 8506-8512.