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Supplementary Methods: One-step Leaching of Black Mass

The black mass was leached with H,SO,4, with adding H,0,, to extract high-value
cathode materials and purify graphite. After leaching, the solid residue was filtrated,
sieved, and dried. The resulting powder was designated as recovered graphite. All
leaching processes were conducted using a 2 M acid concentration with a solid-liquid
ratio of 50 g L' at 90 °C for 6 hours, with the addition of 1.5% (v/v) H,O, (30% w/w)

as a reducing agent.



Table S1: ICP-MS result of black mass

Element Li Co Ni Mn Fe P Al Cu
Batch I (wt.%) 3.45% 2.25% 832% 22.29% 0.69% 1.58% 3.62% 11.14
%

Batch 2 (wt.%) 1.69% 1.24% 4.41% 10.26% 037% 1.00% 5.03% 5.54%
Batch 3 (wt.%) 2.46% 1.85% 6.56% 15.30% 0.65% 1.43% 5.74% 7.55%
Average 253  1.78% 6.43% 15.95% 0.57% 1.34% 4.79% 8.08%
(wt.%) %

Table S2: ICP-MS result of spent graphite after primary acid leaching
Element Li Co Ni Mn Fe P Al Cu
Batch 1 (wt.%) 0.20% 0.07% 0.20% 0.16% 0.70% 0.85% 1.60% 0.75%
Batch 2 (wt.%) 0.23% 0.09% 0.09% 0.11% 027% 0.92% 5.51% 1.12%
Batch 3 (wt.%) 0.29% 0.07% 0.04% 0.07% 0.83% 1.07% 9.40% 2.46%
Average 0.24  0.08% 0.11% 0.11% 0.60% 0.95% 5.51% 1.44%

(wt.%) %




Table S3. Chemical reactions in the primary acid leaching!

Chemical Reaction AG
(kJ mol )
6LiNiy;3Mn, 350453 + 9H,50, + 6FeS0,—2NiS0, + 2Nif -1509.9 Eq. SI
§0,+ 12H,0 + 3F€2(504)3
6LiNiy;3Mn, 350453 + 9H,50, + 3H,0,—2NiS0, + 2NiS( -1078.6 Eq. S3

S0, + 12H,0 + 30,

Table S4. The standard hydrogen potentials of electrochemical reactions?

Electrochemical reaction E., vs. SHE (30 °C)

Fe*t + e sFe?™ 0.667 Eq. S4
Cu*t +2e >Cu 0.337 Eq. S5
2H 7 + 2e” —H, 0 Eq. S6
AR 4+3e" 54l -1.681 Eq. S7

Table S5. ICP-MS result of recovered graphite via a one-step acid leaching

Element Li Co Ni Mn Fe P Al Cu

Batch 1 (wt.%) 0.29% 0.21% 0.71% 1.38% 0.10% 0.13% 0.42% 0.36%
Batch 2 (wt.%) 0.39% 1.71% 1.52% 0.51% 0.33% 0.05% 1.34% 0.22%
Batch 3 (wt.%) 0.35% 0.25% 0.84% 1.72% 0.10% 0.14% 0.32% 0.49%

Batch 4 (wt.%) 0.26% 0.60% 1.01% 0.37% 0.14% 0.05% 1.70% 0.13%
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Figure S1. XPS spectra of black mass and spent graphite.

Figure S2. SEM-EDS mapping of spent graphite.



C
Cc
C

-

F igue 3 . SEM-EDS mapping of AG-xM samples.AG-xM samples, where x represents
H>SO, concentration.

C1s
AG'ZOM F 1s O 1s
— A
2 C1s
o
o | AG-1.5M O 1s
=g 1 F1SAJ_____,./\)
C1s
O 1s
AG-1.0M F1s
=\ e A AL———-'-""\)
.

1200 900 600 300 O
Binding energy (eV)

Figure S4. XPS spectra of acid-leached graphite samples.AG-xM samples, where x
represents H,SO, concentration.
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Figure S5. XPS spectra of graphite samples after calcination and acid leaching
processes. Cal-xh-AG samples, where x represents calcination time. All the following
acid leaching tests were used 1.5M H,SO,.
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Figure S6. Residual metal content after calcination and leaching processes except F.
Cal-xh-AG samples, where x represents calcination time. All the following acid
leaching tests were used 1.5M H,SO,.
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Figure S7. XPS spectra of spent graphite samples after sintered at 600 °C, 800 °C and

1000 °C under N,.
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Figure S8. Residual metal contents using 1.5M H>SO, as the acid concentration in the
recycling process.
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Figure §9. High-magnified _SEM-EDS mapping of AG-2.0M-800 graphite sample.
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Figure S10. XPS spectra of AG-2.0M-800 graphite sample.
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Figure S11. XPS spectra of AG-1.5M and AG-1.5M-800 graphite samples.
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Figure S12. Characterization of commercial graphite, AG-1.5M and AG-1.5M-800
graphite samples. (a) Raman spectra. (b) XRD spectra.
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Figure S13. The electrochemical performance of AG-1.5M-800 graphite sample. (a)
The first charge-discharge cycle voltage profile at 0.1C. (c) dQ vs dV profiles. (e) Rate
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Figure S14. Process flow diagrams of various battery-grade graphite production routes, including inputs and outputs. a) Synthetic battery-grade

graphite

production.’. b)
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recycling in this work.



Energy consumption estimation

To determine the energy input necessary for conducting acid leaching while
maintaining a constant temperature, two components must be considered: first, the
energy required to heat the solution to the desired temperature; and second, the energy

needed to compensate for heat loss over time.
Qtotal = Qheat + Qloss

The energy required to heat the material from room temperature to the desired

temperature can be calculated using the equation:

Qneat =m-c* AT

Where:

o (Ojear = heat energy required (J)

o m =mass of the solution (kg)

« ¢ = specific heat capacity of the solution (J kg! °C-1)
e AT = change in temperature = 75, Tnitia (°C)

To maintain the solution at a constant temperature, it is necessary to continuously
supply energy to compensate for heat losses to the surrounding environment. This
requirement is influenced by several factors, including the quality of insulation, ambient
temperature, and the characteristics of the solution. Heat loss can typically be estimated

using the following equation:

U-A- (Tfinal - Tambient) 't
n

loss —

Where:

e Qs = heat energy lost over time (J)

o U= overall heat transfer coefficient (W m2 °C-!)

e A =surface area of the solution container exposed to the surroundings (m?)
o Tumpiens = ambient temperature (°C)

e ¢ =time you want to maintain the temperature (s)

o 1 = efficiency of the heating system (0-1)



However, under these circumstances, the heat loss is simplified by expressing the heat
loss rate as a percentage of the heater's power output, due to the absence of specific

parameters.

Qloss =a: Qequipment =a- Pt

Where:

e o = aheat loss ratio (0-1)
o P =the power of the heating system (W)
o t=overall heating time (s)

Table S6. Parameters for energy consumption

Parameter Symbol Value  Unit
Reaction Temperature in acid leaching T 90 °C

Room Temperature T 25 °C
Specific heat capacity of the solution ¢ 4186 T kgt e°C!

in primary acid leaching

Specific heat capacity of graphite c 710 T kgt eC!
The power of heating in acid leaching P 1500 w

The power of pyrolysis furnace P 10000 W
Primary acid leaching time t 0.67 h
Secondary acid leaching time t 3 h
Pyrolysis time t 6 h

Heat efficiency in acid leaching a 0.1

Heat efficiency in pyrolysis a 0.3
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