Supporting Information

High performance long chain polyesters via melt copolymerization of cutin-inspired monomers

Zewen Zhu, Joshua T. Damron, Jong K. Keum, Logan Kearney, Vera Bocharova^{*}, and Jeffrey C. Foster^{*} Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

Supplemental Characterization Data

Name	Young's modulus (MPa)	Yield strength (MPa)	Tensile strength (MPa)	Elongation at break (%)	Toughness J/m ³	M _C (g/mol)	Swelling ratio (%)	Insoluble fraction (wt %)
(1) PAA	296 ± 22	1.4 ± 0.4	2.2 ± 0.4	21.8 ± 4.6	28 ± 8	5100	419.2	88.5
(2) P(AA _{0.7} - <i>co</i> - HHA _{0.3})	493 ± 67	4.1 ± 0.5	10.1 ± 2. 1	268.4 ± 43. 6	2430 ± 43 0	18000	450.0	88.3
(3) P(AA _{0.5} - <i>co</i> - HHA _{0.5})	892 ± 24	5.1 ± 0.3	9.8 ± 1.6	271.2 ± 35. 7	2610 ± 37 0	11000	77.1	86.1
(4) P(AA _{0.3} - <i>co</i> - HHA _{0.7})	872 ± 58	5.3 ± 0.6	10.8 ± 1. 5	266.1 ± 32. 1	2730 ± 35 0	4300	74.3	85.1
(5) РННА	1727 ± 5 7	5.3 ± 0.6	8.1 ± 0.8	7.1 ± 1.1	47 ± 7	N.A.	N.A.	N.A.
LDPE	292 ± 13	4.9 ± 0.3	$11.5 \pm 0.$ 8	348.8 ± 45. 2	3050 ± 39 0	N.A.	N.A.	N.A.

Table S1: Physico-chemical characteristics of copolymers and homopolymers

Table S2. Summary of solid state ¹³C NMR spectroscopic analysis.

Sample	%Conversion	%Conversion		
	primary O-H	secondary O-H		
P(AA)	56	39		
P(AA _{0.5} -co-HHA _{0.5})	79	49		
P(HHA)	100	n.a.		

Figure S1. Exemplified peak deconvolution of the WAXS data for $P(AA_{0.3}-co-HAA_{0.7})$, where the choice of the fit was Voight functions.

Table S3.	Results of	the fitting	of the	WAXS	data and	l correspo	onding	crystallinity	obtained	from
the fitting	for studied	polymers.								

	РННА	Р(АА _{0.3} -со- ННА _{0.7})	P(AA _{0.5} -co- HHA _{0.5})	P(AA _{0.7} -co- HHA _{0.3})	PAA
Total crystalline peak area	11.3	5.9	4.6	4.2	4.8
Total amorphous peak area	8.2	9.3	11.3	12.3	14.9
Total WAXS area	19.5	15.2	15.9	16.5	19.7
% crystallinity	57.9	38.8	28.9	25.5	24.4

Name	Lamellar long period,
	ЪР
РННА	134.7 Å
P(AA _{0.3} - <i>co</i> -HHA _{0.7})	119.4 Å
P(AA _{0.5} - <i>co</i> -HHA _{0.5})	154.4 Å
P(AA _{0.7} - <i>co</i> -HHA _{0.3})	132.3 Å
PAA	173.3 Å

 Table S4: Lamellar long periods from SAXS experiments.

Figure S2. TGA results for all co-polymer and homopolymers. The inset contains zoomed-in area to better illustrate the onset of thermal degradation.

Figure S3. DSC a) first (dotted line) and second (solid line) heating cycles b) DSC of $P(AA_{0.3}-co-HHA_{0.7})$, which demonstrates the transient nature of the crystalline phase obtained after the cooling in DSC instrument.

Figure S4. ¹H NMR spectra in MeOD of **HHA** and **AA** monomers and the crude samples obtained via hydrolysis of the various copolymers.

Figure S5. DMA results a) storage modulus b) tan delta.

Figure S6 Cyclic DMA tests for a) $P(AA_{0.7}-co-HHA_{0.3})$; b) $P(AA_{0.5}-co-HHA_{0.5})$; and c) $P(AA_{0.3}-co-HHA_{0.7})$ tested at 25 °C.

Figure S7. Plots of hysteresis area vs. applied max strain for copolymers.

Figure S8. 2D WAXS images of $P(AA_{0.5}$ -co-HHA_{0.5}) at the condition of pristine and 200% stretching.